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Abstract

In this Thesis we are studying the Model Checking Problem in a Pa-
rameterized Framework. The main objective is to determine the impact of
an increment in our descriptive capabilities to the complexity of the Model
Checking Problem over Graphs. There are some results in the field point-
ing to an inversely proportional relation but only as an intuitive notion
not properly analyzed. This relation is presented through the different pa-
rameters that must be utilized to classify the Model Checking Problem for
a logic as FPT. From a graph theoretic approach we aim to express the
boundary between instances that can be checked quickly for a property in
contrast with the ones cannot. To prove this relation we are using graph
decompositions and properties of parameters to establish either a hierarchy
between them or to derive a measurement of the cardinality of the bounded
instances. From the Computability side, parameterized circuits are used to
predict such relations between logics of different expressive power.
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Chapter 1

Introduction

In this Chapter i will try to summarize the reasons that lead me to this
approach among with some basic arguments on the purposes of this attempt.

1.1 Idea Overview
The main objective of defining and studying the Model Checking problem

is not to derive a ”fast” algorithm that solves or describe a technique of
generating such algorithms.At least not in this work.The Model Checking
Problem gives us a way of formulating groups of problems ( or properties )
and deriving through its study information about their structure. Recently
it has been studied excessively due to the applications it finds in formal
verifications.

On the other end Theoretical Computer Science has developed a very big
interest on descriptive frameworks. Upper bounds on the time an algorithm
requires to check a property are derived from the logic required to define the
property. A millstone in this direction was given by R.Fagin in 1973 proving
that each property expressible in ∃ SO is checkable in NP-time.

The Model Checking as a formulation is very simple and does not require
any particular effort towards that end. In the Classical Framework it is
defined as:

φ-Model Checking
Input: A Model G and a Property φ.
Output: ”Yes” iff G |= φ , ”No” otherwise.

In a intuitive manner we expect the computational complexity of the
Model Checking of a property to increase as the logical symbols required to
express the property, become more complex. Of course that doesn’t mean
that expressing a property using more complex tools will increase the cor-
responding complexity. What i am interested in here is the computational
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cost of properties when they are expressed in the least complex logical frame-
work. A way to express this is through the Model Checking Problem (from
now on refereed as MCP).

As you can see the MCP has two inputs and therefore its complexity
will be somehow depending on both.It is obvious that the complexity as as
function will be increasing as some part of the input does.My focus is to try
and keep the complexity low as i increase one parameter and keep the other
one bounded. The resulting complexity will depend on both the size of the
model and the characteristics of the input property. In a closer look other
characteristics of the Model might also be better for determining behavior
towards complexity. This is why a parameterized framework would be more
suitable for our study.

Parameterized Algorithms and Complexity are not new in the Computer
Science community either. The initial work begun by Downey and Fellows
in the early 90’s. They initially proposed that the study of the complexity
of various problems is often not realistic to happen in only terms of size
of the input.From that begun a huge wave of research in the parameter-
ized framework they proposed that resulted in very usefully results in both
Algorithmic and Theoretical directions. The MC problem which i will be
studding in this framework is defined as

Parameterized φ-Model Checking
Input: A Model G and a Property φ.
Parameter: l=|φ|
Output: ”Yes” iff G |= φ , ”No” otherwise.

Note here that the characteristics of the property or the model are left
vague on purpose. We will expand on that when the theoretical background
has been established.

To formulate the above correctly i am going to utilize knowledge from
various fields. Mathematical Logic and Model Theory are used to catego-
rize properties in the corresponding levels of expression power. Algorithmic
schemes and Reductions will be given in a parameterized framework.For a
problem to be characterized computable it will need to belong in the class
FPT(Fixed Parameter Tractable) which is the parameterized equivalent of
easy problems. Additionally i will try to assimilate all results with existing
knowledge from Computability Theory.
The ultimate purpose is to derive a set of rules describing the above behavior
in a way that could be utilized for the design of algorithms. My approach
will try to mathematically relitivize the parameter that classifies a prob-
lem as FTP with the class of logic required to express the corresponding
property. An example of such an accomplishment could be of the form ;

If a property ϕ cannot be expressed in the Logic Class A then
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the parameter that classifies ϕ as FPT is an upper bound for
each parameter classifying to FPT a property expressible in A.

Of course there is some amount or pre-existing work on the Parame-
terized Complexity of the MC Problem supporting the notion of a such
corelation but not in a uniersal manner. Such are the work of Brunno Cour-
celle on the Model Checking for MSO and of Seesse on the expresibiliti of
FPT decidable properties. !!!!!!!. Up until First Order Logic there is no need
for bounds on the Size of the model since the whole Class can be clasified as
FPT parameterized by the !!!!!! of the Properties. As we advance in classes
such as Monadic Second Order , ∃ Second Order , ∀ Second Order or Second
Order there is need for bounds to be applied in both parameters in order
to remain FPT. I will try to interprete these works in the framework i am
presenting. In order to make all the above more well defined i will try to
put them in an algorithmic context.Anyone with even the slightest familiar-
ity with Computer Sciense will have some characheristic problems and the
coresponding algorithm tat solves it. How is though the problem and the
solution assosiated with formal properties?

A Property is a mathematical expresion that uses logical symbols to
express an idea. When those symbols are interpeted in some model the
search for the property becomes the definition of the problem.

For instance given a Set α of numbers and the relation ≤ the property
of P:

x ∈ A : ∀y ∈ A, x ≤ y

would be interpeted as the property of x being the smallest number in A.
The corresponding problem would be find the minimum element of A.

This is a very simple example though. As properties become more com-
plex the notion of expressing them withought ”hand-waving” and phisical
language becomes more demanding. Sometimes the logical language doe-
sent seem enough to express o property. But how do we know that we have
reached the edge of exresiblity for the curent set of symbols? This is where
the erenfrout Frasee!!!!!! games begun to answer this question fo t First
order logic and triggered a similar movement for higher level logics. These
will be explaind appropriately in the coresponding section.

Assuming now we have managed to categorize all properties we can think
for Models such as Sets of Numebrs , Graphs , Funtions , Matrixes !!! ,
Matroids ,Latices ectettera can we derive from this characterization some
sort of the Time a Machine wil need to recognise given property? Intuition
would push us to say that the harder it is to express e paroperty the more
time demanding would be its recognition. In deed all results this far have
ton contradicted this statement but each one independent of the others with-
ought a notion of larger scale behaviur. My work will focus on convincing
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that such a behaviur exists and that there are tools that can give s some
information about it.

1.2 Why Parameterized?
To give a full argument of that we will need of course a much more detailed

introduction to the basic notions of classical and parameterized Complexity
Theory. Nevertheless historically there is some valuable knowledge that can
be utilized here.

The Complexity required to recognize sets of properties has been studied
this far in both Frameworks. Early on in the history of computer Science
the language theoretic approach for Computable properties was one of the
most promising ones. Of course here there is a very large gap between the
use of Logics or Grammars as the tool for expression. With Grammars and
the separation of Languages into Context Free , Context Sensitive , Regular
etcetera brought results that connected the corresponding language to the
computational model able to recognise the hole group .INSERT HERE A
TABLE THAT SUMMARISES From the side of Logic though the search for
the limits of computation has had a more difficult road. The correspondence
between the levels of the Polynomial Hierarchy and the Σ hierarchy over
properties expressed with specific quantifier alterations is one of the most
important reasons to pursue the notion of a strict correlation of the fields.
The main meaning of this correspondence is that based of the alterations of
quantifiers needed to express a property we can acquire an upper bound for
the Checking Complexity. The converse would be that a known complexity
for the checking of a property also provides an argument for its expressibility
in one of the levels of the Σ hierarchy. The proof of this is not constructive
and therefore does not provide algorithms for each case. Therefore, although
extremely interesting the above are more of theoretic value. In reality those
results are very difficult to utilize. For instance:

A Programmer, Joe is trying to design an effective algorithm
to recognize a new property in graphs. On his hands he has a
rough drought of the algorithm and with the help of a Theo-
retical Computer Scientist he has also defined the property in a
Logical Framework.He can use our theory and understand form
the formulation of the property and check his algorithm is under
the upper bound we provide. Or in the converse direction he can
use the algorithm to check if the formulation is using minimal
quantifier alterations ( in the case is algorithm is optimal ) . In
both cases he cannot know if his algorithm is indeed fast

What was the problem in the above example then? The secret lies in the
notion that both directions of the equivalence produce upper bounds. And
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in addition the produce those upper bound in a non constuctive way. What
Joe would want is a way to know that his algorithm cannot become more
efficient. He wants a lower bound.

Attempts to produce more tight results have been made. As mentioned
above by Fagin ∃SO captures NP which means that every property expre-
sible in ∃SO will be checkable in NP-time and every property checkable in
NP time will be expresible in ∃SO . Is that an improvement for Joe? We
are still not providing him with any lower bounds. In deed the given upper
bound is more tight and more elegant but it would have worned him that a
competitor is able to improve the result significantly.

Of course a programmer reading all the above would probably think
that in any case the proof that theory can provide for the existence of an
algorithm is in no way close to the actual discovery. And in many ways
he would be right. A good programmer when facing a problem is going
to solve it by taking into consideration many variables. He can event try
to minimize variables that the above theory can’t even recognise such as
number or proccesors , space , a spesific data structure and many more.
How can a theorietic approach based on input length predict such detailed
work on a spesific problem when the studies are takng place on groups of
problems?

Don’t rush to shout IT CAN’T!
But if you already did then you are not entirely mistaken. In order to

provide Realistic Lower Bounds one must try to capture all this extra infor-
mation. Many aproaches have arrised form such ideas. Propabilistic frame-
works expore the Computational power of Traditional Models if allowed to
give answers that will not always be correct. Aproximation algorithms also
provide fastest results but sacrifice the optimal solution. The parameter-
ized approach tries to constuct algorithms that wil be fast in a majority of
the cases. This happens by utilizing spesific structural characteristics of a
problem. By considericng these characteristics bound by a constant irelle-
vant of the size of the input we are able to constuct prosedures that remain
efficient even for NP-hard problems. The formal definition of this study
aims to bring closer the design of algorithms and the exloration of stuctural
parameters that have an impact on their complexity.

A very good way for someone to get familiar with the parametirized
aproach is to imagine everything through models. In the most intimate
form one can imagine models as graphs. There are many onter kinds of
models but espessialy in Computer Sciense almost everything is expresible
in a graph framewirk. In many cases our results will be spesificaly for graphs
but this in not a general rule. Nevertheless the problem of searching a graph
to see if it has a property is always way easier to compehend. In addition,
defining families is also more intuitive since we can corespond a group in a
spesific image. The defining of families of graphs with formal tools wil be
analised later.
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Under this notion our search for reasurment for Joe takes another turn.
Now theoretical proofs over this framework can actualy interfere with other
aspects of a problem rather than its formal definition. There are many
exremely interesting results to support this such ass SEESE , COURCELLE
, OUM , DEMAIN and many more. These results not only encurage the
intuitive notion of this thoery but give appliable examples for aglorithm
constuction. To expand i will need a background on some theoretic consepts.

While reading from now on keep in mind the 5 important questions of
Computer Sciense Theory.

1. What is the purpose of this appoach?

2. Is this tool appropriate for the study of this subject?

3. What kind of assumtions are needed?

4. Are these assumptions realistic?

5. Can we do better?

Those will not only help someone understand the this work but in my
opinion help in the general scientific procedure in this field.

Finaly it is appropriate to mention here that in the above list of questions
one could maybe argue that maybe the approximation framework or the
probabilistic one are more appropriate for such a study. Now of course
advances in both of those areas are very helpful for the society of computer
science and also provide powerful tools to confront intractability. However
at least from my perspective they lack the characteristic of being very close
to the intuition of the way we understand structures and graphs. These
intuitive notions are much harder to be transmitted trough said frameworks.

This doesn’t mean however that no interest exists there. In the final
chapter of this thesis i will describe ways to both interpret results in those
framework or reproduce some of the procedures described later but on classes
described through other frameworks and not logic.

1.3 Historical Notes
Early in the 80’s research pointed out that classical complexity might not

be the ideal framework for some specific problems and corresponding algo-
rithms. In particular, Vardi pointed out that the input for database-query
evaluation consists of two components, query and database. For first-order
queries, query evaluation is P-SPACE-complete, and for fix-point query it
is EXPTIME-complete, but, if you fix the query, the complexity goes down
to LOGSPACE and PTIME correspondingly. In particular, the size of the
database was not the right complexity for database-query complexity and
the size of parameter counted.[37]
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Those works initiated the notion the time needed for NP-Complete
problems although exponential might accept improvements in
the way the exponential will present itself.[36]

Parameterized complexity and algorithms have developed rapidly dur-
ing the last three decades. Since the fundamental work of Downey and
Fellows in[32, 33, 34] with a series of papers aiming to establish a global
framework and present their previous work, parameterized complexity the-
ory introduced numerous innovative ideas in algorithmic design and offered
insightful results in almost all disciplines of theoretical computer science.

The first monograph in this field was the book:[R.G. Downey and M.R.
Fellows.Parameterized complexity. Monographs in Computer Science. Springer-
Verlag, New York,1999.] The next two monographs in the field appeared
during 2006. One was the book: [Rolf Niedermeier.Invitation to fixed-
parameter algorithms , volume 31 of Oxford Lecture Series in Mathematics
and its Applications. Oxford University Press, Oxford, 2006] and the other
was the book: [J. Flum and M. Grohe.Parameterized complexity theory .
Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
Berlin,2006]

In the same time and ever earlier completely different people studied
independently the time complexity of recognizing parameters in graphs. The
oldest relevant is of course treewidth for which the very first result that this
thesis will utilize was presented by Bodlaender in a 1996 paper [31]. The
problem of deciding if a graph has treewidth k is NP-complete if k is allowed
to vary, was discussed a decade later in Arnborg, Corneil,and Proskurowski
and in 1987 [25], those authors also showed that there was an O(nk+2 )
for treewidth-k graphs. Robertson and Seymour [9] gave the first FPT (it
was O(n2 )) algorithm in 1995. Their algorithm was based upon the minor
well-quasi-ordering theorem, and thus was highly nonconstructive and non-
elementary and had huge constants.

Such works initiated a very large wave of researchers to turn to the param-
eterized approach.The study of decidability results for monadic second-order
theories of classes of combinatorial objects and their connections with au-
tomata has a long and interesting history, as can be found in Büchi [1].
Probably the first result is the one of Büchi who proved that a language is
regular iff it is definable by some formula in monadic second-order logic (of
strings). The famous hallmark result here is the decidability result of Rabin
[10].

Detleff Seese was the first to conjecture that classes of graphs with decid-
able theories were “similar to trees” [23]. Seese was able to prove that if a
class of planar graphs with maximal degree ≤ 3 avoids certain graphs as in-
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duced subgraphs, then it has a very nice parse tree. Since Rabin had proven
the decidability of the monadic second-order logic of trees, Seese was able to
deduce that these theories were decidable. Of course, Rabin’s method is not
very feasible. Seese continued to pursue his conjecture that tree-like graphs
were the boundary of decidability.
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Chapter 2

Parameterized Complexity

This chapter is dedicated to present all of the tools i will be using and
explain the most important notions of each theory.

2.1 Definitions
To begin we will present the notions of Parameterized Complexity in core-

spondance with Classical Complexity theory.
We are from now on concerned with problems(languages) of two inputs.

One is the instance and one the parameter. When given a representation
of an istance we count on our understunding of the idea it represents to
understund it. Similarily when given a number that represents a parameter
and its relation to the instance we are able to inetrpet it as a part of the
problem. And above all the parameter is considered bounded and small.

Definition 2.1.1 (Parameterized Problem). A parameterization of Σ∗ is a
recursive function k : Σ∗ → Σ∗. A parameterized problem is a tuple (L, k),
where L ⊆ Σ∗ and k is a parameterization of Σ∗.

Our parameter k is defined by this recusrive function in order to demon-
strate its relation with each instance. For readability purposes and with-
ought loss of generality we will consider it to be and integer and therefore
our Languages become of the form, k : Σ∗ → N

The above definition is very close to the clasical complexity definiton of
what we call a Language or Problem. Following that we have to define what
is considered a parameterized fast algorithm.

Definition 2.1.2 (The Class FPT). The class of parameterized problems
that can be solved in time

O(f(k) ∗ nc)

, where f(k) is computable.
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Note. The above definition might alert someone in the sence that it allows
extremely large grouth functions regarding the parameter.

That is true but in the sense that the parameter is small these increments
wil remain bounded by a constant. Another thing the reader might notice
is that we are using the algorithm in a Turing-Machine sence although we
haven’t beed very spesific on th definition of it. To design algoriithms that
are in agreement within the current standards of programing we will be
using turing machines in the classes that have to do with algorithms.

Now is a good time to give some examples of parameterized problems.
In this framework a problem always comes pared with a parameter. Paired
with another parameter a problem might display a completely different com-
plexity behaviour. For example, consider VERTEX COVER parameterized
by k, defined as follows.

k- VERTEX COVER
Input: A Graph G=(V,E)
Parameter: An integer k
Output: ”Yes” if G has a VC of size k , ”No” otherwise.

As you can see we have used here the size of the solution to define our
parameter. Here are some other examples for graph problmes that can also
be parameterized similarly.

Figure 2.1: Other problems parameterized by the size of the solution
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If we consider the clasical versions of the above problems where k is
not fixed, they are all NP-Hard. However each one exhibits some form of
parameterized tractability. Note here that there are two versions of Param-
eterized Tractability. Uniform and non-Uniform. The difference is that in
the uniform case there exists an algorithm of the appropriate running time
that solves the problem for each k. In the non- uniform case for each k there
exists an FPT algorithm of the appropriate running time but there is no
way to describe the prosedure for all k. This is a descrimination that arrises
from the attempt to solve spesific NP-hard problems. In this approach the
descrimination is not of great importance.

2.2 Parameters
It is already obvious that parameters can be of different power. An easy

example is the minimun and maximum edge degree of a graph. Since always

Maxd ≥Mind

we can assume that if a problems is FPT parameterized by Mind it will be
FPT parameterized by Maxd. Of course the relationship between parame-
ters will be described way more explicitely later on but this already gives an
image of how can someone approach a Problem from a paameterized point
of view. If say it seems completely imposible to find an FPT algorithm for
a problmem one can start thinking of more strong parameters.

By doing so someone must be carefull not to end up with a solution
only because he choose an extremely stong parameterization . Although
the formal definition does not forbid parameters that are comparable with
the input something like this can be very easily proved to have no scientific
interest. Say for instance that someone picks a parameter that can bound
the total input . This is not hard to imagine but lets say that someone
parameterizes a problem by n-1 where n is the size of the input.
Theorem 2.2.1. If for a parameter k ∃ an increasing recursive function
g(k) such that n ≤ g(k) then all problems of classical complexity O(f(n)) ,
f:computable are FPT parameterized by k.
Proof. Pick a problem P of classical complexity O(f(n)) . We know that
f(n) is increasing since it is a complexity function.Also n ≤ g(k) → f(n) ≤
f(g(k)) therefore the Complexity of P is upper bound by O(f(g(k))) and
hence in can be solved in such time.

Since f,g are computable and increasing → f ◦ g is computable and
increasing. The above complexity is of the form

O(f(k) ∗ nc)

and therefore P is FPT .
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The correct usage of parameters for each problem is nt at all trivial and
has presented a very wide arrea for research.

There is a very large amount of work focusing on new algorithmic tech-
niques and tools that utilize all of the above notions and have been very
fruitful this far. Advances in parameterized algorithms have produced a
great amount of results that all are extremely interesting. However my
interest is less problem and therefore are not presented here.

2.3 Hierarchy
Returning to the familiar for us examples we could attempt to param-

eterize the Graph Genus problem by the vertex cover of the input graph.
Would that result in a fixed parameter problem? For spesific parameters
and some spesific problems this question can be ansered easily. For prob-
lems in P by default all parameterizations result in FPT algorithms. But
in the general case this question is a very complex and interesting one. The
base of course for all arguments towards answering start from the definition
of parameterized reductions.
Definition 2.3.1 (Parameterized Reduction). For two parameterized prob-
lems (L, k) , (L′, k′). We say that (L, k) reduces to (L′, k′) through an
FPT -reduction (noted . L ≤FPT L′) if there exists an alforithm R such
that

1. For eatch x ∈ Σ∗, x ∈ L⇔ R(x) ∈ L′

2. R is computed by an FPT -algorithm.

3. k′ = g(k), where g : N → N is computable.
If A ≤FPT B and B ≤FPT A, we say that A,B are FPT -equivalent (noted.
A ≡FPT B).

Using the above definition we can start building a complexity theory.
Parameterized problems in FPT are grouped together on the notion that
you can decide the yes-insances of each one independently withought exiding
the time limits of the definition. Of course for each problem in FPT the
algorithm might be of completely different complexity. And the parameters
that reduce each one to FPT are not nececarily computaly bound by each
other. The Turing machine model is not able to provide easily a hardness
theory. This will be explained later.

Our complexity theory begins by defining classes of hard problems and
describing relations between them. Of course as mentioned before one prob-
lem can be FPT on one parameterization and not FPT on another. Our
parameterized reduction captures this by requesting the parameter of the
new parameterized problem to be at least computably bound by the old one.
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Looking at the classical complexity theory we will try to define the TUR-
ING MACHINE ACCEPTANCE in a parameterized framework in order to
build up from there equivalences between problems

SHORT TURING MACHINE ACCEPTANCE
Input: A nondeterministic Turing machine M and a string x.
Parameter: An integer k
Output: ”Yes” if M has a computation path accepting x in ≤ k

steps, ”No” otherwise

It seems to us that if one accepts the philosophical argument that TUR-
ING MACHINE ACCEPTANCE is intractable, then the same reasoning
would suggest that SHORT TURING MACHINE ACCEPTANCE is fixed-
parameter intractable. We will soon establish that there are a large number
of problems of the same fixed-parameter complexity as SHORT TURING
MACHINE ACCEPTANCE . We believe that the existence of such a large
number of problems of the same fixed-parameter complexity as SHORT
TURING MACHINE ACCEPTANCE gives further weight to the thesis
that SHORT TURING MACHINE ACCEPTANCE is not fixed-parameter
tractable.

The main theorem is an analog of Cook’s theorem. We will first establish
some preliminary results. We will need some definitions. It is convenient
to consider a 3CNF formula as a (boolean) circuit. Thus, a 3CNF formula
is considered as a circuit consisting of one input (of unbounded fanout) for
each variable, possibly inverters below the variable, and structurally a large
and of small or’s (of size 3) with a single output line.

Figure 2.2: A 3CNF fornula is a large AND of small ORs
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The reader should refer to Fig. 2.3. We can similarly consider a 4CNF
formula to be a large and of small or’s, where small is defined to be 4. More
generally, it is convenient to consider the model of a decision circuit. This
is a circuit consisting of large and small gates with a single output line,
and no restriction on the fanout of gates. For such a circuit, the depth is
the maximum number of gates on any path from the input variables to the
output line, and the weft is the large gate depth. More formally, the weft of
a circuit is defined as follows:

Definition 2.3.2. Let C be a decision circuit. The weft of C is defined to be
the maximum number of large gates on any path from the input variables to
the output line. (A gate is called large if its fan-in exceeds some prearranged
bound. The reader should note that none of our results depend upon what
the bound actually is.)

Let F = {C1, ..., Cn, ...} be a family of decision circuits. Associated with
F is a basic parameterized language:

LF = {⟨Ci, k⟩ : C1 has a weight k satisfying assignment }

Figure 2.3: A weft 2 depth 5 decision circuit.

For instance, if F is the family of boolean circuits corresponding to propo-
sitional formulas in 3CNF form, then L F corresponds to WEIGHTED 3CNF
SATISFIABILITY . A generalization of the class of circuits corresponding
to 3CNF formulas is provided by the following:
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WEIGHTED WEFT t DEPTH h CIRCUIT SATISFIABILITY (WCS(t, h))
Input: A weft t depth h decision circuit C
Parameter: A positive integer k
Output: ”Yes” if Does C have a weight k satisfying assignment ,

”No” otherwise

Definition 2.3.3. Notation will be as follows:

• We will denote by LF (t, h) the parameterized language associated with
the family of weft t depth h decision circuits.

• (Basic hardness class) We define a language L to be in the class
W [t] iff L is fixed-parameter reducible to LF (t, h) for some h

With the reduction matching the one given in definition 2.3.1
The final theorem of ths section will be an analog of cooks theorem that

the readen can find the proof of in [35]. The theorem is given nevertheless
because most of the proofs of chapter 5 are given in a circuit framework and
thus it is important for the reader to know the relation between circuits and
Turing machines.

Theorem 2.3.1. (Analog of Cook’s Theorem (I))
The following are complete for W [1]:

• WEIGHTED n-SATISFIABILITY for any fixed n ≥ 2.

• SHORT TURING MACHINE ACCEPTANCE .

So to summarize the class FPT is associated with circuits of 0 weft and
a a constant k to bound the fan-in of the gates. W [1] would be of weft 1
and so on. The current state of the parameterized hierarchy is given in the
following schema:
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Figure 2.4: Parameterized Hierarchy

2.4 Parameterized Model Checking
One of the main themes in descriptive complexity theory is to study the

complexity of problems of the following type:

Given a finite structure A and a sentence ϕ of some logic L,
decide if A satisfies ϕ

This problem , which will be called the model-checking problem for L,
has several variants. For example, given a structure A and a formula ϕ(−→χ )
we may want to compute the set of all tuples −→α ∈ A such that A satisfies
ϕ(−→α ), or we may just want to count the number of such tuples. Often, we
fix the sentence ϕ in advance and consider the problem :

Given a structure A decide if A satisfies ϕ
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Model-checking problems and their variants show up very naturally in var-
ious of applications in computer science such as Database Query Evaluation ,
Model-checking in Computer-Aided verification and Constraint Satisfaction
Problems .

It is obvious already that proving that the Model-checking problems is
FPT or FLP (= Fixed-Parameter Linear) seems to be a very meaningful
statement in comparison to the notion that the Model-checking problem
being in PTIME.

Now as one might predict there are two possible parameters in this quest.
The sentence ϕ and the structure A. Depending on which of these are con-
sidered parameters of the problems and which are fixed we get tree different
versions of the MCP of logic L.

Complexity theory defines its main concepts via acceptance of string
languages by computational devices such as Tuuring Machines. To talk
about complexity of logics on finite structures, we need to encode finite
structures and logical formulae os strings. For formulae we shall assume
some natural encoding: for example enc(ϕ), the encoding of a formula could
be its syntactic tree ( represented as a string).

As for structures there are several different ways to encode them. They
are all of course equivalent but given a specific one will make some proofs
easier and will some times provide useful information on the running time
of a procedure. Suppose we have a structure A over a vocabulary σ .

Let A ={a1, . . . , an}. For encoding a structure we always assume an
orderig on the universe. In some cases the ordering relation is part of the
vocabulary and thus we use it. In others we just shoose and arbitrary one.
The order in this case will have no effect on the result of algorithms and
properties but we need it to be able to talk of computability and complexity.

We choose for now an order of the universe say a1 ≤ a2 . . . ≤ an. Each
k-ary relation RA will be encoded by a nk− bit string = enc(RA) as follows:

• Consider an enumeration of all k-tuples over A in the lexicographic
order.

• Let −→aj be the jth tuple in this enumeration.

• the jth bit of enc(RA) is 1 if −→aj ∈ RA and 0 if −→aj /∈ RA

• σ contains only relations symbols since a constant can be encoded as
a unary relation containing one element.

If σ = {R1, . . . Rp} then the basic encoding of a structure is the concati-
nation of then encodings of said relations . In the circuits computational
model the the length of the input is a parameter of the model and thus the
|A| can be easily calculated from the basic encoding but for turring ma-
chines the size of the input must be known by the device. For this reason
we include in the encoding of A the size of the model as follows:

17



enc(A) = 0n ∗ 1 ∗ enc(RA
1 ) ∗ . . . ∗ enc(RpA). (2.1)

The length of the above string is denoted by ∥ A ∥ and is

∥ A ∥= (n+ 1) +

p∑
i=1

narrity(Ri)

Now that we have an encoding of A we can talk about the complexity
of the model checking problem.

Definition 2.4.1. Let K be a complexity class and L a logic.

1. The data complexity of L is K if for every sentence ϕ in L, the language

{enc(A)|A |= ϕ}

belongs to K.

2. The expression complexity of L is K if for every finite structure A the
language

{enc(ϕ)|A |= ϕ}

belongs to K.

3. The combined complexity of L is K if the language

{enc(ϕ), enc(A)|A |= ϕ}

belongs to K.

Note here that data complexity refers to the complexity of finding all the
properties that hold for a specific structure ( size of structured is considered
constant and ignored) while the expression complexity is the problem of
recognizing the models that satisfy a specific property( this is the more
common algorithm design notion that the reader is probably familiar with)
. The combined complexity represents the general model problem with which
i am focusing on.

The formalization i will follow from now on is :
k -ϕ MODEL CHECKING FOR ϕ
Input: A Graph G=(V,E) and ϕ
Parameter: Parameter k + |ϕ|
Output: ”Yes” if G |= ϕ , ”No” otherwise

As you see here the general term of structure changes to Graph. Our
size N here denotes the number of nodes and the edge relation is the one
and only member of σ
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From now on all result are given for graphs sine i will be taking into
account specific graph parameters. However through easy transformation
processes that can be fount in [38] all structures and relations can be trans-
formed to graphs with only the edge relation. What i will be looking for is
to derive some rules that correlate the parameter k with the logic L as to
end up with the above problem being in FPT.

A more detailed introduction in pamameterized complexity in Greek can
be found in [44].

2.5 Graph Metrics
In this section i will give the basic definition and results one the graph

metrics that will be necessary for later on. Mainly i will present only metrics
that correspond to specific problems and theorems presented later. The
same study can be done for a variety of others though if they appear to give
promises towards descriptive results.

2.5.1 Treewidth
Treewidth is the most popular and old of our different parameters. It was

introduced in the early 70’s from independent researchers but it took the
form that we study today in 1984 by Neil Robertson and Paul Seymour [6]
in a series of papers on graph minors. After that it has been excessively
used both in the design of algorithms and in the theoretical computability
theory.

Treewidth is tightly bound to the notion of a tree decomposition. So:

Definition 2.5.1. (Tree Decomposition - Treewidth)

1. A Tree decomposition of a graph G=(V,E) is a tree T together with
a collection of subsets Tx (called bags) of V labeled with the vertices
x of T such that ∪Tx = V and the following hold

• For every edge uv of G there is a some x such that u,v ∈ Tx

• If y is a vertex of on the unique path in T from x to z then
Tx ∩ Tz ⊆ Ty .

2. The width of a tree decomposition is the maximum value of |Tx| -1
over all the vertices of the tree T of the decomposition.

3. The treewidth of Graph G is the minimum width of all thee decom-
positions of G.

There is a very large amount of results that were produced in the attempt
to make the construction of tree decompositions easier . Here are some that
would appear useful to be considered by the reader in order to understand
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Figure 2.5: A Tree Decomposition of treewith 2

better the rest of this thesis. For e graph G = (V,E) and treewith k we
know:

1. k ≥maximum clique size of G

2. In every graph G, there exists a vertex of degree at most tw(G).

Both of these proofs are quite easy and will be given in the appendix.
Computing treewith is NP-complete in the classical framework as shown in
1987 from Arnborg, Corneil Proskurowski [25]. It was proved to be FPT
on the clasical parameterization on size of the solution by Bodlaender and
Kloks [27]in 1996.

Determining if a problem is FPT is usually done by excluding a specific
set of minors as mentioned before in section 2.4 .In the case of families of
bounded treewidth it is quite difficult ti give a specific selection of graphs
but there are some results.

For every finite value of k, the graphs of treewidth at most k may be
characterized by a finite set of forbidden minors. (That is, any graph of
treewidth >k includes one of the graphs in the set as a minor.) Each of
these sets of forbidden minors includes at least one planar graph.

• For k = 1, the unique forbidden minor is a 3-vertex cycle graph.

• For k = 2, the unique forbidden minor is the 4-vertex complete graph
K4.
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• For k = 3, there are four forbidden minors: K5, the graph of the
octahedron, the pentagonal prism graph, and the Wagner graph. Of
these, the two polyhedral graphs are planar.

For larger values of k, the number of forbidden minors grows at least as
quickly as the exponential of the square root of k. However, known upper
bounds on the size and number of forbidden minors are much higher than
this lower bound.

Figure 2.6: Forbidden minors for k = 3

At the beginning of the 1970s, it was observed that a large class of combi-
natorial optimization problems defined on graphs could be efficiently solved
by non serial dynamic programming as long as the graph had a bounded
dimension, a parameter shown to be equivalent to treewidth by Bodlaender
(1998). Later, several authors independently observed at the end of the
1980s that many algorithmic problems that are NP-complete for arbitrary
graphs may be solved efficiently by dynamic programming for graphs of
bounded treewidth, using the tree-decompositions of these graphs.

As an example, the problem of coloring graph of treewidth k may be
solved by using a dynamic programming algorithm on a tree decomposition
of the graph. For each set Xi of the tree decomposition, and each partition
of the vertices of Xi into color classes, the algorithm determines whether
that coloring is valid and can be extended to all descendant nodes in the
tree decomposition, by combining information of a similar type computed

21



and stored at those nodes. The resulting algorithm finds an optimal coloring
of an n-vertex graph in time O(kk+O(1) ∗ n), a time bound that makes this
problem fixed-parameter tractable.

2.5.2 Cliquewidth
In graph theory, the clique-width of a graph G is a parameter that de-

scribes the structural complexity of the graph. it is closely related to
treewidth, but unlike treewidth it can be bounded even for dense graphs.This
is quite useful since it appears there are specific problems that are easy for
graphs of bounded treewidth and for dense graphs. It is defined as the min-
imum number of labels needed to construct G by means of the following 4
operations :

• Creation of a new vertex v with color i (noted i(v))

• Disjoint union of two colored graphs G and H (denoted G⊕H)

• Joining by an edge every vertex labeled i to every vertex labeled j
(denoted join(i, j)), where i ̸= j

• (i → j ): recolor all vertices i to color j

Definition 2.5.2. The smallest number of colors needed to construct G
through the above operations (i.e. as a colored graph classically isomorphic
to G) is called the cliquewidth of G, cw(G).

Graphs of bounded clique-width include the cographs and distance-hereditary
graphs. Although it is NP-hard to compute the clique-width when it is un-
bounded, and unknown whether it can be computed in polynomial time
when it is bounded, efficient approximation algorithms for the clique-width
are known. Based on these algorithms and on Courcelle’s theorem, many
graph optimization problems that are NP-hard for arbitrary graphs can be
solved or approximated quickly on the graphs of bounded clique-width.

The construction sequences underlying the concept of clique-width were
formulated by Courcelle, Engelfriet, and Rozenberg in 1990 [28] and by
Wanke (1994). The name ”clique-width” was used for a different concept by
Chlebíková (1992). By 1993, the term already had its present meaning.

Easy results about cliquewidth that may be utilized later are:

1. Cliques have cliquewidth 2.

2. If G has bounded treewidth then it has bounded cliquewidth.

3. The complement graph of a graph of clique-width k has clique-width
at most 2k

In classical complexity cliquewidth is NP-complete to compute but
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Figure 2.7: All possible graphs of cliquewidth 3 involving vetrices A,B,C

2.5.3 Branchwidth

In graph theory, a branch-decomposition of an undirected graph G is a
hierarchical clustering of the edges of G, represented by an unrooted binary
tree T with the edges of G as its leaves. Removing any edge from T partitions
the edges of G into two subgraphs, and the width of the decomposition is
the maximum number of shared vertices of any pair of subgraphs formed
in this way. The branchwidth of G is the minimum width of any branch-
decomposition of G.

Officially then:

Definition 2.5.3. Let G be a graph on n vertices.

• A branch decomposition of G is a pair (T, τ), where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from the set of leaves of
T to the edges of G. If e is any edge of the tree T, then removing e
from T partitions it into two subtrees T1 and T2.

• This partition of T into subtrees induces a partition of the edges asso-
ciated with the leaves of T into two subgraphs G1 and G2 of G. This
partition of G into two subgraphs is called an e-separation.

• The width of an e-separation is the number of vertices of G that are
incident both to an edge of E1 and to an edge of E2; that is, it is the
number of vertices that are shared by the two subgraphs G1 and G2.

• The width of the branch-decomposition is the maximum width of any
of its e-separations. The branchwidth of G is the minimum width of a
branch-decomposition of G.
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Figure 2.8: A branch decomposition showing an e-separation. The separa-
tion, the decomposition, and the graph all have width three

It is NP-complete to determine whether a graph G has a branch-decomposition
of width at most k, when G and k are both considered as inputs to the
problem.[11] However, the graphs with branchwidth at most k form a minor-
closed family of graphs,[8] from which it follows that computing the branch-
width is fixed-parameter tractable: there is an algorithm for computing
optimal branch-decompositions whose running time, on graphs of branch-
width k for any fixed constant k, is linear in the size of the input graph.[29]

For planar graphs, the branchwidth can be computed exactly in polyno-
mial time. This in contrast to treewidth for which the complexity on planar
graphs is a well known open problem. The original algorithm for planar
branchwidth, by Paul Seymour and Robin Thomas, took time O(n2) on
graphs with n vertices, and their algorithm for constructing a branch de-
composition of this width took time O(n4).This was later sped up to O(n3)

As with treewidth, branchwidth can be used as the basis of dynamic
programming algorithms for many NP-hard optimization problems, using
an amount of time that is exponential in the width of the input graph
or matroid.For instance, Cook Seymour (2003) apply branchwidth-based
dynamic programming to a problem of merging multiple partial solutions
to the traveling salesman problem into a single global solution, by forming
a sparse graph from the union of the partial solutions, using a spectral
clustering heuristic to find a good branch-decomposition of this graph, and
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applying dynamic programming to the decomposition.

Fomin & Thilikos (2006) argue that branchwidth works better than treewidth
in the development of fixed-parameter-tractable algorithms on planar graphs,
for multiple reasons: branchwidth may be more tightly bounded by a func-
tion of the parameter of interest than the bounds on treewidth, it can be
computed exactly in polynomial time rather than merely approximated, and
the algorithm for computing it has no large hidden constants.

Forbidden Minors By the Robertson–Seymour theorem, the graphs of
branchwidth k can be characterized by a finite set of forbidden minors.

1. graphs of branchwidth 0 are the matchings. The minimal forbidden
minors are a two-edge path graph and a triangle graph.

2. The graphs of branchwidth 1 are the graphs in which each connected
component is a star. The minimal forbidden minors for branchwidth
1 are the triangle graph and the three-edge path graph.

3. The graphs of branchwidth 2 are the graphs in which each biconnected
component is a series-parallel graph. The only minimal forbidden mi-
nor is the complete graph K4 on four vertices.

4. The graphs of branchwidth 2 are the graphs that don’t have as minors
the graph of the octahedron, the complete graph K5, the Wagner graph
and the cube graph

2.5.4 Pathwidth
In the first of their famous series of papers on graph minors, Neil Robert-

son and Paul Seymour (1983) define a path-decomposition of a graph G to
be a sequence of subsets Xi of vertices of G, with two properties:

• For each edge of G, there exists an i such that both endpoints of the
edge belong to subset Xi

• For every three indices i ≤ j ≤ k,Xi ∩Xk�Xj

The second of these two properties is equivalent to requiring that the
subsets containing any particular vertex form a contiguous subsequence of
the whole sequence. In the language of the later papers in Robertson and
Seymour’s graph minor series, a path-decomposition is a tree decomposition
(X,T ) in which the underlying tree T of the decomposition is a path graph.

Definition 2.5.4. The width of a path-decomposition is defined in the same
way as for tree-decompositions, as max(i)|Xi|−1, and the pathwidth of G is
the minimum width of any path-decomposition of G.
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The subtraction of one from the size of Xi in this definition makes lit-
tle difference in most applications of pathwidth, but is used to make the
pathwidth of a path graph be equal to one.

Although very similar to treewidth note here that only path graphs and
not trees have a pathwidth of 1.

Figure 2.9: A path decomposition of Pathwidth 3

It is NP-hard to find the pathwidth of arbitrary graphs, or even to ap-
proximate it accurately.[30] However, the problem is fixed-parameter tractable:
testing whether a graph has pathwidth k can be solved in an amount of time
that depends linearly on the size of the graph. Additionally, for several spe-
cial classes of graphs, such as trees, the pathwidth may be computed in
polynomial time without dependence on k. Many problems in graph algo-
rithms may be solved efficiently on graphs of bounded pathwidth, by using
dynamic programming on a path-decomposition of the graph[2].

Forbidden Minors The property of having pathwidth at most p is, it-
self, closed under taking minors: if G has a path-decomposition with width
at most p, then the same path-decomposition remains valid if any edge is
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removed from G, and any vertex can be removed from G and from its path-
decomposition without increasing the width. Contraction of an edge, also,
can be accomplished without increasing the width of the decomposition,
by merging the sub-paths representing the two endpoints of the contracted
edge. Therefore, the graphs of pathwidth at most p can be characterized by
a set Xp of excluded minors.

Although Xp necessarily includes at least one forest, it is not true that
all graphs in Xp are forests: for instance in figure 2.10, X1 consists of two
graphs, a seven-vertex tree and the triangle K3.

Figure 2.10: Forbidden Minors of Pathwidth 1

However, the set of trees in Xp may be precisely characterized: these
trees are exactly the trees that can be formed from three trees inXp−1 by
connecting a new root vertex by an edge to an arbitrarily chosen vertex in
each of the three smaller trees. For instance, the seven-vertex tree in X1 is
formed in this way from the two-vertex tree (a single edge) in X0. Based
on this construction, the number of forbidden minors in Xp can be shown
to be at least (p!)2.The complete setX2 of forbidden minors for pathwidth-2
graphs has been computed and it contains 110 different graphs.
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Chapter 3

Graph minors

3.1 Definitions
In this course, a graph is given by a set V, whose elements are called ver-

tices, and a set E whose elements, called edges of the graphs, are distinct
subsets of size 2 of V. According to the usual vocabulary, this means that
our graph will always be simple and without loops. Unless specified, V will
always be a finite set. For a graph G, V(G) will always denote its set of
vertices, E(G) its set of edges. Very often we will write xy instead of x, y
for an edge of G.

A vertex v is a neighbor of a vertex u if uv � E(G). The neighborhood
of u, denoted N(u) is the set of neighbors of u. Its degree, denoted d(u)
is the cardinality of its neighborhood. The maximum degree of a graph is
usually denoted �. A graph with no edges will be called a stable set, or
independent set, and a graph will all possible edges between its vertices
a clique, or complete graph. The complete graph on n vertices is usually
denoted Kn . The path P k is a graph with V (Pk) = x1, x2, ..., xk, with
edges E = xi, xi + 1, 1 ≤ i ≤ k − 1 .

The vertices x1 and xk are called the endpoints of the path. If we add
the edge xk x1 to P k then the resulting graph is the circle on k vertices,
denoted Ck .

3.2 Tree Algorithmic Problems
Consider the following problem of connectivity.
k-DISJOINT PATH

Input: A graph G, an integer k and two subsets of vertices A and B of size
k
Output: TRUE if there exists k vertex disjoint paths from A to B

This problem is a very classical one, and Ford-Fulkerson Algorithm tells
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us that this is solvable in time O((k|E(G)|) (classical Ford-Fulkerson Algo-
rithm is for edge disjoint path in the directed case, but it is easy to reduce
our case to this one). The maximum value k corresponds to a minimum
vertex cut separating A and B and is a classical result of Menger.

Theorem 3.2.1. ([3] ) Let x and y be distinct vertices of a graph G. Then
the minimum number of vertices whose deletion separates x from y is equal
to the maximum number of internally disjoint paths between x and y.

Now consider the smilingly similar problem. Problem : k-disjoint rooted
path problem Input : A graph G, an integer k, and two subsets of vertices
X = x 1 , x 2 , . . . , x k and Y = y 1 , y 2 , . . . , y k Output :
TRUE if there exists disjoint paths P 1 , P 2 , . . . , P k , such that P i is a
path from x i to y i . This kind of problem in a more general form is know
as commodity flow problem and has many applications. With k part of the
input, this problem is NP-complete, even restricted to the class of planar
graphs. Nevertheless, in the Graph Minor series of papers, Robertson and
Seymour proved a polynomial algorithm for fixed k. This result is extremely
difficult and relies and techniques and notions that will be illustrated in this
course.

Theorem 3.2.2. The k-disjoint path problem can be solved in time O ( f
(k).n 3

(Robertson-Seymour, [19])
The result has been improved to quadratic time by Kawabayarashi,

Kobashi and Reed ([]). Let us see an algorithmic consequence of this re-
sult related to topological minor detection.

Definition 3.2.1. A graph H is topological minor of a graph G if there
exists a injective mapping f from V(H) to V(G) such that for each edge uv
of H, there exists in G a path P uv connecting f (u) and f (v) in G with the
property that all these path are internally disjoint.

Example. Describe the graphs that do not contain the following graphs
as topological minors : K 3 , K 1,3 , K 1,4 . A natural algorithmic problem
is then the following. Problem : Topological H-minor detection Input : A
graph G and a graph H. Output : TRUE if H is a topological minor of G,
FALSE otherwise. The problem is NP-complete if H is part of the input,
but if H but if H is fixed, then this problem was proven to be polynomial
by Robertson and Seymour.

Theorem 3.2.3. Let H be a fixed graph. There exists a polynomial time
algorithm to decide whether H is a topological minor of a given graph G.

Proof. Let f : V(H) → V(G) be an injection (note there are polynomially
many such objects), we want to decide if there exists disjoint paths in G
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between the f (v) corresponding to edges of H. To do that, we replace each
vertex f (v) by d H (v) copies of f (v) (having the same neighbours). Now,
for k = |E(H)|, solving the k-Rooted Disjoint Path Problem for these sources
clearly solves the desired question.

The complexity of this algorithm is hence O( f (k)) n k , where k is
the size of H, and n the size of G. It is therefore polynomial for every fixed
k. In 2010, Grohe, Kawabarayashi, Marx, and Wollan proved a stronger
result, that this can be done in O( f (k)) n 3 which is FPT . In particular,
the previous theorem implies that any family of graphs that is defined with
forbidding a FINITE family of graphs as topological minors is polynomially
testable. One such family is very well known, it is the family of planar
graphs, as was proven by Kuratowski in 1930.

Theorem 3.2.4. (Kuratowski,1930) A graph G is planar if and only if it
does not contain K 5 or K 3,3 as a topological minor.

The crucial fact here is not that planar graphs are defined by a certain list
of forbidden topological minors, this is easy (why?), it is the finiteness of this
list that is non trivial. The central result of Robertson and Seymour theory
is that many different graph properties can be characterized by a finite
list of forbidden substructures, and hence get polynomial time recognition
algorithm. Of course, one does not need the difficult of Robertson and
Seymour to prove that planar graphs are polynomially recognisable, there
even exists linear time algorithm to do that. Nevertheless, we will see later
that there are instances of such recognition problem for which the only proof
of polyniomiality was obtained through their results.

3.3 Minors
Minors are defined through three operations on a graph G (at the end of

each line the notation for the resulting graph).

1. Remove a vertex v (and all its incident edges) : G v

2. Remove an edge e (but not its end vertices) :G e

3. Contract an edge e = xy, which means remove x and y, add a new
vertex z whose neighborhood is the union of the neighborhoods of x
and y (without putting any loop on z) : G/e.

A contraction G/e is topological if one of the endpoints of e has degree 2.
Its inverse is the subdivision operation which consists in removing an edge
xy, adding a new vertex z, and adding the edges xz and zy.

Definition 3.3.1. Let G and H be two graphs.
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• H is an induced subgraph of G if H is obtained from G by the repeated
use of rule 1.

• H is a subgraph of G if H is obtained from G by the repeated use of
rule 1 and 2.

• H is a spanning subgraph of G if H is obtained from G by the repeated
use of rule 2.

• H is a minor of G if H is obtained from G by the repeated use of rule
1,2 and 3.

• H is a topological minor of G is H is a minor of G and every contraction
used was topological.

Recall that the largest integer k such that G has a complete graph (resp.
independent set) on k vertices as an (induced) subgraph, is called the clique
number (resp. independence number) of G, denoted c.n(G) (resp. i.n(G)).
Due to a classical result of Karp ([15]), deciding if a graph has c.n(G) � k or
not (similarly for i.n(G)) is an NP-hard problem. The following definition
gives an alternate form of minors that is often useful.

Definition 3.3.2. Let G and H be two graphs, and denote V (H) = {v1, . . . , vp}.
Then H is a minor of G if and only if there exists p connected and disjoint
subgraphs G1, . . . , Gp of G such that for every edge (vivj) of H, there exists
an edge between Gi and Gj .

Let us mention here that high density implies the existence of a large
minor. There exist theorems with better bounds, but we are only interested
here in the fact that such a bounds exists.

Theorem 3.3.1. Every graph with average degree at least 2r−2contains Kr

as a minor.,

Proof. By induction on r. Let G be a graph of average degree at least 2r−2

. There- fore |E(G)|/|V (G)| ≥ 2r−3. Let H be minimal amongst all minors
of G such that |E(H)|/|V (H)| ≥ 2r−3. It implies that when one contracts
an edge in H, one must loose at least 2r−3 edges (otherwise the inequality
would still be satisfied, and H would not be minor minimal). Hence, for
any xy edge of H, x and y have at least 2r−3 common neighbors. In other
words, if x is a vertex in H, then the minimum degree in its neighborhood is
at least 2r−3 , so by induction it contains a Kr−1 minor, which yields with
x the desired K r minor.

Let us discuss now the difference between minors and topological minors.
Topological minors are special kind of minors but of course the converse is
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not true : a graph G can contain H as a minor, but not as a topological
minor. However When H is of small maximum degree, this is true.

Another very useful result is of course the following by Robertson and
Seymour [7]

3.4 Wagner’s Conjecture

Definition 3.4.1. A class of graphs C is said to be minor closed if for
every graph G ∈ C and every minor H of G,H ∈ C.

Definition 3.4.2. If C is a minor closed class of graphs, a graph G is a
bound for C if G is not in C but every strict minor of G is.

Theorem 3.4.1. Let C be a minor closed class, and X be its (possibly
infinite) set of bounds. Then, G ∈ C ⇔ G does not contain any graph of X
as a minor

We are now ready to state the celebrated conjecture formulated by Wag-
ner in 1937:

Theorem 3.4.2. A minor closed class of graph is defined by a finite list of
forbidden minors.

The above means that for a minor closed class you can easily check if
a graph is in it by checking all of the graphs minors for one of the given
finite list of forbidden ones. Now this is extremely important for most of
the theorems that will be mentioned in chapter 7.

Let us mention here that high density implies the existence of a large
minor; there exists theorems with better bounds, but we are only interested
here in the fact that such a bounds exists.

Definition 3.4.3. The set of forbidden minors(FC) for a class of graphs
Cwill be called obstructions. A graph belongs to C if and only if it does
not contain (as a minor) any graph in FC

Let us discuss here what can these obstructions be. For a given minor
closed class C, a graph H is said to be a bound if G is not in C but every
strict minor of G is. Note that if H is a bound, since it is not in C it must
contain any obstruction so it must be itself an obstruction. The following
easy theorem tells us that the set of bounds is in fact a sufficient set of
obstructions.

Theorem 3.4.3. Let C be a minor closed class, and B be its (possibly
infinite) set of bounds. Then G ∈ C if and only if G does not contain any
graph of X as a minor.
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Proof. If H not in the class then either it is minimal or it contains H0 not
in the class.We can repeat the argument, and since there exists no infinitely
decreasing sequence of graphs, every graph not in the class admits one of
the bound as a minor.

(This uses the fact that there exists no infinite decreasing sequence of
graphs for the minor order - such partial orders are called well founded.)

As said before, it implies that testing if a certain graph G belongs to C is
exactly testing if G contains one of the minor-minimal graphs with respect
to C.

Therefore, testing if a certain graph G belongs to C is exactly testing if
G contains one of the minor-minimal graphs with respect to C.

Here is a table describing the set of minor-minimal graphs for certain
classes.

Graph Class Minor Minimal Graphs
Forests Triangle

Union of paths Triangle , Claw
Planar K5 & K3,3

Toric ≥ 16629 (but finite)

So another way of stating Wagner conjecture would be to say : Every
minor closed class of graphs has a finite set of bounds. Note that by defini-
tion one bound cannot be the minor of another. Using the terminology of
partially ordered sets, they form an anti-chain : a set of pairwise not com-
parable elements. So a way to prove Wagner conjecture would be to prove
that there exists no infinite anti-chain for the minor relation on graphs. In
fact this equivalent as we will show now.

Definition 3.4.4. A partial order 4 defined on a set X is a well quasi
order (WQO) if there is no infinite decreasing sequence and no any infinite
anti-chain.

A infinite sequence that is either decreasing or an anti-chain will always
be called a bad sequence. A wqo is hence defined as a partial order with no
bad sequences. Note that in the case of graphs, there cannot be an infinite
decreasing sequence, so the only possible bad sequence would be an infinite
anti-chain.

Theorem 3.4.4. Wagner’s conjecture is equivalent to say that the class of
all graphs with the minor relation is a wqo.

Proof. Assume that the minor relation is a wqo. consider a class C that
is minor closed. Let FC be the class of graphs minimally (for the minor
relation) not in C. Then FC is an anti-chain, so it is finite, and it is easy to
see that G is in C if and only if G does not contain any graph in FC as a

34



minor. Now assume that Wagner’s conjecture is true. Assume there exists
a bad sequence of graphs Gn . Let C be the class that do not contain any
of the G n as a minor. It is minor closed, hence there exists a finite list
(Hi) such that G is in C iff it does not contain any of the H i as a minor.
So every Gi must contain one of these graphs as a minor. By pigeonhole
principle, there exists Gi and Gj that contain the same Hk . But conversely,
Hk is not in C so by definition it must contain one of the Gn as a minor. by
transitivity, this contradicts the fact that the Gn form an anti-chain.
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Chapter 4

Logics over Graphs

The most important classical time and space complexity classes, such
as PTIME, NP, or PSPACE, have clean definitions in terms of resource-
bounded Turing machines. It is well-known (though still surprising) that
most natural decision problems are complete for one of these classes; the
consequence is a clear and simple complexity theoretic classification of these
problems. However, if more refined complexity issues such as approximabil-
ity, limited nondeterminism, or parameterizations are taken into account,
the landscape of complexity classes becomes much more unwieldy. This
means that the natural problems tend to fall into a large number of ap-
parently different classes. Furthermore, these classes usually do not have
straightforward machine characterizations, but can only be identified through
their complete problems.

Logic can serve as a tool to get a more systematic understanding of such
classes. The basic results of descriptive complexity theory [39] show that
all of the standard classical complexity classes have natural logical charac-
terizations. For example, Fagin’s Theorem characterizes NP as the class of
all problems that can be defined in the fragment Σ1

1 of second-order logic.
One advantage that such logical characterizations have over machine char-
acterizations is that they allow for more fine tuning. For instance, one may
ask which problems can be defined by a Σ1

1 -formula whose first-order part
only contains universal quantifiers. While for decision problems in NP such
restrictions do not lead to any remarkable new classes, there are interest-
ing classes of NP- optimization problems obtained by restricting syntactic
definitions this way. The best-known of these classes is Papadimitriou and
Yannakakis’ MAXSNP.

This approach seems to open the door to an endless variety of syntac-
tically defined complexity classes, but fortunately it turns out that a fairly
limited number of syntactic forms suffices to define those classes that have
natural complete problems. Remarkably, these syntactic forms tend to be
similar even in different application domains.
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In this chapter, we provide the necessary prerequisites from mathemati-
cal logic and review some basic facts about the complexity of propositional,
first-order, and second-order logic.

4.1 Propositional Logic
Formulas of propositional logic are built up from a countable infinite set

of propositional variables by taking conjunctions, disjunctions, and nega-
tions. The negation of a formula α is denoted by ¬α. Besides the normal
binary conjunctions and disjunctions, it will be useful to explicitly include
conjunctions and disjunctions over arbitrary finite sequences of formulas in
our language (instead of just treating them as abbreviations). The nor-
mal binary conjunctions of two formulas α, β are called small conjunctions
and are denoted by (α ∧ β). Similarly, binary disjunctions are called small
disjunctions and are denoted by ∨.

Conjunctions over finite sequences (i)i ∈ I of formulas are called big
conjunctions and are denoted by

∧
i�I i . Here I may be an arbitrary finite

nonempty index set. Disjunctions over finite sequences of formulas are called
big disjunctions and are denoted by

∨
. A formula is small if it neither

contains big conjunctions nor big disjunctions. Of course, every formula is
equivalent to a small formula, but the precise syntactic form of formulas is
important. For example, the formulas∧

i�[5]
i and 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5

Propositional variables are usually denoted by the uppercase letters X, Y,
Z, and propositional formulas by the Greek letters α, β, γ, δ, λ(λis specifically
used for literals). A literal is a variable or a negated variable.

The class of all propositional formulas is denoted by PROP. For t ≥
0, d ≥ 1, we inductively define the following classes Γt,d and ∆t,d of formulas:

Γ0,d = {λ1∧. . .∧λc|c ∈ [d], λ1, . . . , λc : literals }∆0,d = {λ1∨. . .∨λc|c ∈ [d], λ1, . . . , λc : literals }

And:

Γt+1,d = {
∧
δi| I finite nonempty index set, and δi ∈ ∆t,d∀i ∈ I} ∆t+1,d = {

∨
γi| I finite nonempty index set, and γi ∈ Γt,d∀i ∈ I}

2,1 is the class of all formulas in conjunctive normal form, which we
usually denote by CNF. For d ≥ 1, 1,d is the class of all formulas in d-
conjunctive normal form, which we often denote by d-CNF. Similarly, 2, 1 is
the class of all formulas in disjunctive normal form (DNF), and 1,d the class
of all formulas in d-disjunctive normal form (d-DNF). If α =

∧
i∈I

∨
j∈Ji λij

is a formula in CNF, then the disjunctions
∨

j�Ji ij are the clauses
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A formula α is in negation normal form if negation symbols occur only in
front of variables. A formula α is positive if it contains no negation symbols,
and it is negative if it is in negation normal form and there is a negation
symbol in front of every variable. Each formula of propositional logic has
a parse tree, which may formally be defined as a ”derivation tree” in the
grammar underlying the formula formation rules. For example, the parse
tree of the Γ2,3 -formula ∧

i∈2[]

∨
j∈[3]

((Xij∧ ̸ Yi) ∧ Zj)

is displayed in Fig. 4.1

Figure 4.1: Parse tree of the example formula

4.1.1 Satisfiability Problems
For each class A of propositional formulas or (Boolean) circuits, we let

Sat(A) denote the satisfiability problem for formulas or circuits in A. For ex-
ample, Sat(3-CNF), that is, Sat(1, 3), is the familiar 3-satisfiability problem,
and Sat(CIRC) is the satisfiability problem for circuits, which we denoted by
Circuit-Sat in the previous chapter. p-Sat(A) is the parameterization by the
number of variables of the input formula, a problem which we considered in
the introductory chapter for the class of all propositional formulas . It is well
known that Sat(A) is NP-hard for every class A ⊇ Γ1, 3 and that Sat(∆2,2) is
in polynomial time. p-Sat(A) is fixed-parameter tractable for every class A
of formulas whose membership problem is fixed-parameter tractable. So for
now, the parameterized problems p-Sat(A) are not particularly interesting.
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However, for now the following version of the satisfiability problem is
much more important; it is the decision problem associated with the opti-
mization problem that tries to maximize (or minimize) the number of vari-
ables set to true in a satisfying assignment. The weight of an assignment
V is the number of variables set to true. A formula α is k-satisfiable, for
some nonnegative integer k if there is a satisfying assignment V : var(α)
→ { true, false} for α of weight k. We often identify an assignment V :
var(α) → {true, false} with the set {X|V (X) = true}. For any class A of
propositional formulas, the weighted 3 satisfiability problem for A is defined
as follows:

p-WSat(A)
Input: α ∈ A and k ∈ N.
Output: Decision whether α is k-satisfiable

We consider the parameterized weighted satisfiability problem for A:

p-WSat(A)
Input: α ∈ A and k ∈ N.
Parameter: an integer k
Output: Decision whether α is k-satisfiable

It is known that WSat(2-CNF) and WSat(CIRC) and hence WSat(A)
for all polynomial time decidable classes A of formulas or circuits contain-
ing 2-CNF are NP-complete; thus all these problems are equivalent under
polynomial time reductions. This equivalence does not seem to carry over
to the parameterized problems and fpt-reductions.

Theorem 4.1.1. For d ≥ 1, the problem p−WSat(Γ1,d) for formulas in A
that are positive, that is, that contain no negation symbols, is fixed-parameter
tractable.

From which with trivial work found in [41] we can derive.

Theorem 4.1.2. For every d ≥ 1, the problem p −WSat(∆+
2,d) is fixed-

parameter tractable.

4.2 First-Order Logic

4.2.1 Relational Structures

A (relational) vocabulary τ is a set of relation symbols. Each relation sym-
bol R has an arity (noted arity(R)) ≥ 1. A structure A of vocabulary τ , or
τ -structure (or simply structure), consists of a set A called the universe and
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an interpretation RA ⊆ Aarity(R) of each relation symbol R ∈ τ . We syn-
onymously write ā�RA or RAbara to denote that the tuple bara ∈ Aarity(R)

belongs to the relation RA .

We only consider nonempty finite vocabularies and finite struc-
tures, that is, structures with a finite universe. The arity of τ is
the maximum of the arities of the symbols in τ .

Example 4.2.1. (Graphs). Let τGraph be the vocabulary that consists of
the binary relation symbol E. A directed graph may be represented by a
τGraph structure G = (G,EG). An undirected graph, or just graph, may be
represented by a

τGraph

-structure G in which the edge relation EG) is symmetric. We always assume
graphs and directed graphs to be loop-free, that is, we assume the edge
relation to be irreflexive.

Unless we want to emphasize in some situations that we view a graph
G as an {E}-structure, we continue to denote the vertex set of a graph G
by V and the edge set by E (instead of G and E(G) ). We usually denote
undirected edges in set notation (as in {v, w}).

Example 4.2.2. (Circuits). Let τCirc be the vocabulary consisting of the
binary relation symbol E and unary relation symbols OUT , AND, OR,
NEG, IN , TRUE , FALSE . A (Boolean) circuit may be represented by a
τCirc-structure C, where:

• (C,EC)) is a directed acyclic graph.

• OUTC contains exactly one node, and this node has out-degree 0 (the
output node)

The sets ANDC , ORC , NEGC form a partition of the set of all nodes
of in-degree at least 1 (the and-nodes, or-nodes, and negation nodes, re-
spectively). Nodes in NEGC have in-degree 1. The sets INC , TRUEC

,FALSEC form a partition of the set of all nodes of in-degree 0 (the in-
put nodes and the nodes computing the Boolean constants true and false,
respectively).

4.2.2 First Order Syntax and Semantics
We fix a countably infinite set of (individual) variables. Henceforth, we

use the letters x, y, . . . with or without indices for variables. Let τ be a
vocabulary. Atomic formulas of vocabulary τ are of the form x = y or
Rx1...xr, where R� is r-ary and x1, ..., xr, x, y are variables.

First-order formulas of vocabulary τ are built from the atomic formulas
using:
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• the Boolean connectives ¬,∧,∨

• existential and universal quantifiers ∃, ∀

.
The connectives → and ↔ are not part of the language, but we use them

as abbreviations:

ϕ→ ϕ for ¬ϕ ∨ ψ and ϕ↔ ψ for (ϕ→ ϕ) ∧ (ϕ→ ϕ)

.

By free(φ) we denote the set of free variables of φ, that is, the set of vari-
ables x with an occurrence in φ that is not in the scope of a quantifier binding
x. A sentence is a formula without free variables. We write φ(x1, . . . , xk) to
indicate that φ is a first-order formula with free( φ) ⊆ {x1, . . . , xk}. We also
use the notation φ(x1, . . . , xk) to conveniently indicate substitutions. For
example, if φ(x) is a formula, then φ(y) denotes the formula obtained from
φ(x) by replacing all free occurrences of x by y, renaming bound variables
if necessary.

To define the semantics, for each first-order formula φ(x1, . . . , xk) of
vocabulary τ and each τ -structure A we define a relation φ(A) ⊆ A k in-
ductively as follows:

• if φ(x1, . . . , xk) = Rxi1 . . . xir with i1, . . . ir ∈ [k] then

φ(A) := {(a1, ..., ak) ∈ Ak|(ai1, . . . , air) ∈ RA}

Equalities are treated similarly

• If
φ(x1, . . . , xk) = ψ(xi1 , . . . , xil)∧χ(xj1, . . . , xjm) with i1, . . . , il, j1, . . . , jm ∈
[k], then

φ(A) := (a1, ..., ak) ∈ Ak|(ai1, . . . , ail) ∈ ψ(A), and (aj1, . . . , ajm) ∈ (A).

The other connectives are treated similarly.

• If
φ(x1, . . . , xk) = ∃xk+1ψ(xi1 , . . . , xil) with i1, . . . , il ∈ [k + 1], then

φ(x1, . . . , xk) ∈ Ak there exists an ak+1 ∈ A such that (ai1, . . . , ail) ∈ ψ(A)

Universal quantifiers are treated similarly.
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The definition also applies for k = 0; in this case,φ(A) is either the
empty set or the set consisting of the empty tuple. If φ(x1, . . . , xk) is a
formula and A a structure of a vocabulary τ that does not contain all relation
symbols occurring in φ(x1, . . . , xk), then we let φ(A) := ∅ We usually write
A ⊨ φ(x1, . . . , xk) instead of (a1, ..., ak) ∈ φ(A). If φ is a sentence, we simply
write A ⊨ φ instead of φ(A) ̸= ∅ and say that A satisfies φ or A is a model
of φ . Note that for a sentence φ the condition φ (A)̸= ∅ just means that
φ(A) contains the empty tuple.

Example 4.2.3. Recall that τGraph = {E} and that we represent directed
graphs and graphs as τGraph -structures G = (G,EG)

Letk ≥ 1 and consider the following formula:

vc′(x1, . . . , xk) := ∀y∀z(Exy →
∨
i∈[k]

(xi = y ∨ xi = z)).

Then for every graph G and every tuple (a1, . . . , ak) ∈ Gk ⇔ {a1, . . . ak},
is a vertex cover of G. A bit sloppily, we will say that the above formula
defines the set of all vertex covers of at most k elements of a graph.” Let

vck := ∃x1 . . . ∃xk(
∧

1≤i≤j≤k

xi ̸= xj ∧ vc′k(x1, . . . , xk))

Then a graph G satisfies the sentence vc k if and only if G has a vertex
cover of k elements.

4.3 Monadic Second Order Logic of Graphs (MSO)
One of the most important milestones of the arrea of algorithmic meta-
theorems that will be revised later was Courcelle’s theorem appearing in
[19, 18] for the first time. It will later be a very important part of the
paradigms of this thesis.

The syntax of the second-order monadic logic of graphs includes the logical
connectives ∧,∨,¬, variables for vertices, edges, sets of vertices, and sets of
edges, the quantifiers ∀,∃ that can be applied to these variables, and the
five binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable.

2. d ∈ D, where d is an edge variable and D is an edge-set variable.

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the
interpretation is that the edge d is incident on the vertex u.

4. adj(u, v), where u and v are vertex variables and the interpretation is
that u and v are adjacent vertices.
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5. Equality for vertices, edges, sets of vertices and sets of edges.

We will use lowercase letters for vertices or edge variables and uppercase
letters for variables representing sets of edges or sets of vertices.

Example 4.3.1. (Hamiltonicity) A graph G is Hamiltonian if and only if
it has a spanning cycle. the edges of G can be partitioned into two sets red
and blue such that:

• Each vertex has exactly two incident red edges, and

• The subgraph induced by the red edges is a connected spanning sub-
graph of G.

In developing the MS2 formula that expresses the property of Hamil-
tonicity, we will represent the set of red edges by the variable R and the set
of blue edges by the variable B. The exact formula is given in example 8.1.1

Actually, this language is sometimes referred to in the literature as the
extended monadic second-order language, and the logic the extended
monadic second-order logic or MS2 logic (e.g. Arnborg [2], Seese [24], and
Arnborg, Lagergren, and Seese [4]). This is because we are looking at a
two-sorted structure with predicates for edges and vertices plus an incidence
relation. Another natural language has only vertex symbols and one must
use binary relations for edges. Following Courcelle,we call this one-sorted
logic the MS1 logic. Naturally, the monadic second-order theories are dif-
ferent. MS2 also allows for multiple edges whereas MS does not. Clearly
there are properties definable in MSO2 that are not expressible in MSO1

Further on in chapter 7 we will see another version of MSO the Matroid
MSO. The analytic definitions of that are not given here since they are a
bit out of the scope of the current section. One can find more details in
appendix .2.
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Chapter 5

The trade-off function

In this chapter the trade-off relation is defined and studied with respect
to the fields that have been explained already.

5.1 Elementary Description
This far we have parameterized the model checking problem with respect

to the length of the property to be checked and the k as a parameter regard-
ing the structural properties of the input instance.

Without further ado here follows a rough shape of the desired result.

Theorem 5.1.1. Assume a logic class A of expressive power x that parame-
terized by k0 is FPT. For every increment on the expressive power of A there
exist a structural parameter k, that classifies the Model Checking Problem of
all properties expressible in A as FPT on instances of bounded k .

The above theorem has a very trivial proof similar to theorem 2.2.1 and
as always by accepting that parameterizing by a number that can bind the
size or the input is on the table.

Proof. There are two ways to derive a proof:

• Without the use of parameter k0 we can immediately define k = g(n)
where n is the size of the input model for the Model-Checking of A’. k
classifies A’ as FPT.

• The Model Checking Problem of A will be of some complexityO∗(F (k0))
where the notation O∗ is ignoring any polynomial terms of measure
n. The increment of the expressive power is an expansion that can
be applied to all the properties expressible in A. So there is an FPT
algorithm that requires O∗(F (k0)) and can me called an h(k) number
of times for the model checking of A’ as long as h(k) remains irrelevant
of n. We can pick for h(k) a function for which
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h(kn) ≥ n is true ∀n

By doing so we ensure that the running time of the Model-Checking
problem of A’ will be bound by O∗(h(k)(k0)) which is still FPT.

In order to produce some better result we must study the above relation
with respect both to the generality of the parameters and the relationships
between them.

So the first question of interest would be : Can we extract information
towards the relationship of the parameters by looking at the relationship
between expressibility classes?

Definition 5.1.1 (Stronger). We will say that a parameter x is stronger
than a parameter y if given a fixed k the percentage of instances that have
x bounded by k is smaller than the percentage of instances that have y
bounded by k.

In simple words x is stronger than y if it is more likely given a random
input to end up with an instance of bounded y than a bounded x.

From now on when mentioning a parameter of a Logic Class we
assume that this parameter is the the weakest we can find for
this class. Meaning that it is the one corresponding to the largest
amount of instances without covering the hole universe.

Theorem 5.1.2. Given two logic classes A and B and if A has a higher
expressive power than B then the parameter that classifies A as FPT is
stronger than the parameter that classifies B as FPT.

a trivial first look into the above theorems proof could be:

Proof. If A is of higher expressive power than B then all properties definable
in B are also definable in A. Without loss of generality we can say that
parameter x classifies A as FPT and y classifies B.
∀ properties p ∈ B , the MCP for (p,x) ∈ FPT since p ∈ B → p ∈ A → ,
and ∀p ∈ AMCP (p, x) ∈ FPT. Therefore if p is expressible in B , we can
simply express it using A and use the corresponding parameter for an FPT
algorithm. So if A is of higher expressive power than B then all properties
in B can be solved in FPT time using the parameter of A. Our definition
of stronger requires to assume a smaller percentage of instances to have
bounded the stronger parameter.

Suppose now that the parameter y of B is stronger than x of A. That
means that for each property of B the amount of instances of the MCP(p,y)
that we can solve efficiently with an FPT algorithm with parameter y is
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Figure 5.1: Percentage of bounded k instances over strict Logic inclusions

smaller than the amount we would solve if we expressed p in A and used
the FPT algorithm that solves the MCP(p,x) in A. ⊥

Now of course although the above is a start it doesn’t really give any
information rather than just supporting the argument that there might be
a larger scale correlation besides the trivial one. I have not presented yet
any information towards how can someone either utilize existing knowledge
on this field or at least use some process to produce results.

The above only means that while using strict bounds on language needed
to express a property, when a property needs more expression power you
need to sacrifice an amount on instances to maintain the MCP in FPT.

The new parameter though (of the more expressive complexity class)
even if it requires a stronger parameter does not necessarily associate the
parameter with the same instances. Of course the empty graph as a input
will always be part of all graphs bounded by a random parameter k and
therefore there is reason to believe that in most cases there is a part of the
universe of instances that given two different parameters k1, k2 will have
them both bounded. But in the general case we are just interested on the
cardinality of the set that has each parameter bounded.

For a logic class A and the parameter k that classifies A as FPT
the set of instances that have the parameter bounded by k on
an input of size n will be called SA

One here might guess that depending on the parameter we can actu-
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Figure 5.2: The relation between the parameters of logic classes A and B
when A is of higher expressive power than B

aly determine or approximate the cardinality of SA . This is not only very
interesting but also quite useful. There are some results regarding FPT
checkable logics that can be interpreted in this framework and start rela-
tivizing the results.For instance one could start arguing on the relationship
of the parameters that classify as FPT MSO1&MSO2. Another thing one
must keep in mind is that in order to properly relativize the parameters we
must know that each one of them is tightly bound to the Logic class . An
example would be

If A is a logic class then for p ∈ A and an instance I, if I has
bounded k then p is checkable in FPT time. And all the set or
instances that can be checked in FPT time for a property in A
all have the parameter k bounded.

If no such result exists for a logic class then the above cannot be applied
in a straightforward way. Thankfully there are cases where such results
exist and in the absence of such we can think of workarounds. In some cases
correlating structural parameters of graphs is a step towards understanding
the nature of the properties that led to them. In other cases the relationship
between the parameters is the only clue towards the relationship of the
Logics although that is a topic not studied extensively here. The parameter
classification is a very large project and i have started an attempt on it
in chapter 6. After some basic results are presented, there is space for
interpreting affected existing works.
Definition 5.1.2. From now on when referring to this function the following
apply:
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• The trade-off function will be noted as 𝟋

• in agreement with the above note for a logic class A the parameter
that classifies A as FPT will be noted kA

• the above parameter will be considered to be the weaker (= least
strong ) known one.

• The straightforward relation will be considered to be the one refering
to a parameter that classifies a Logic class as FPT ( i.e. the MCP of
A is FPT parameterized by kA )

• The converse relation will be considered to be the one associating a
family of graphs and a checkable logic with a bounded parameter ( i.e.
if family F has a checkable logic A then it has bounded kA

Some of the results that i will be quoting later on might not be the
optimal known ones. However they might be the most appropriate to cite in
this framework. This doesn’t mean that later ones cannot be also interpreted
and utilized. Of course to ensure optimality there must also exist some short
of converse theorem. In the cases there isn’t there are some extra steps that
need to take place in order to return to a point where we can produce useful
results.

PROBLEM: There might exist a case where a converse theorem is not
known for a Logic class. For reference lets say that for class A all properties
can be checked n FPT time with parameter kA. Now we can discriminate
two scenarios:

1. A converse does not exist

2. A converse exists but for a parameter k′B

In both cases and for completeness purposes we can temporarily accept
the converse parameter to be the one of the right higher Complete for our
intent Logic class. Also there might be a case where only some short of
converse is known. Each one of these cases needs a very small explanation
as to how it is going to be treated in the future.

A small representation of all above cases is represented in the following
table

In the above table logic A is considered less expressive than B , B than
C and so on. Lets begin with the second row of the table.

What we know is that the MCP for Logic class B is FPT for kB. What
we need is at least some parameter for witch the Converse holds

Theorem 5.1.3. For Logic B the Converse holds for parameter kA
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Logic Related parameter Converse
A kA kA
B kB -
C kC k′C
D - kD
E kE kE

Table 5.1: Possible Discontinuities

Proof. B is more expressive than A → ∀p ∈ A, p ∈ B. From the converse
theorem of A: If a family of graphs F has a checkable A then it is of bounded
kA.Suppose F has a checkable B. A ⊆ B → F has a checkable A → F has a
bounded kA

For the fourth row of table 5.1 we know that for a family of graphs F if
D has a checkable Logic D then F is of bounded kD

What we want is a parameter k that for witch the relation in question
holds. I.e. The MCP of D is FPT parameterized by k.

Theorem 5.1.4. The MCP of D is FPT parameterized by kE

Proof. The MCP of E is FPT parameterized by kE . D is less expressive
than E → ∀p ∈ D, p ∈ E. Therefore the MCP of D is FPT parameterized
by kE

Regarding the third row the situation gets more complicated in case that
the exact relation between kC & k′C is not known. Here it is not enough
to know witch parameter is stronger ( is some cases we do not know even
that) . We need to be able to decide for each instance I the bound on both
parameters if such a value exists. Again this can only be done by analysis
on specific parameters and therefore this is a part of chapter 6.

Definition 5.1.3. In the above context we can distinguish three scenarios.

1. ∀I instances of bounded kC , I is of bounded k′C

2. ∀I instances of bounded k′C , I is of bounded kC

3. The exact relation between kC & k′C is not known.
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for the above we can define as KC = stronger(kC , k′C , kC + k′C)
the definition of stronger here is enough to cover all scenarios. If for

instance SC ⊆ S′
C then KC = k′C . The rest of the cases can be tested

similarly.

Through this trick we can summarize table 5.1 as:

Logic Related parameter Converse
A kA kA
B kB kA
C KC KC

D kE kD
E kE kE

Table 5.2: Corrected Discontinuities

We will see further on that the above table is not actually very far from
the reality. Of course this table only summarizes relations between logics
for which we know strict inclusion properties.

5.2 Refinements
This far i have only given proof on the existence of a somewhat inversely

function between parameters and Logics. Lets assume though for the sake
of argument that this function could be further determined.

What kind of input and output would it have?

Could it be some deterministic description?

What kind of mathematical properties would it have?

Each of the above is accompanied with understanding an aspect of the
nature of the problem .

So lets start at the beginning. Suppose that a strict relation exists.
How can we measure such a thing? Reminder here that we are trying to
describe the way expression power in logics interacts with parameters of
input instances.
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Imagine an F function that as an ipput there is a variable describing
in a way how expressive a Logic is and as an output we have a quantity
that gives some short of information toward what kind of parameter would
correspond to that language.

Its quite obvious early on that F would not be of the short

F (x) = x2 + 4

or any other continuous function over the real numbers for example.
There are quite a lot of reasons why such a thing wouldn’t work and

the first one i am going to focus on is the fact that in any case the relation
i am looking for will be in any way continuous. Even if we end up with
a number as a input the values this number can be assigned will not be
continuous since they have to correspond to expression power. Lets focus
then to the kinds of logics that exist and what kind of increments are applied
form one Expression Power to the other. The way we can prove if a property
is expresible in a Logic has been covered in Chapter 4

1. propositional logic

2. FO logic

3. MSO1

4. MSO2

5. SO

In each one of these the difference is some operator , a part of the vo-
cabulary, the use of Predicates or limitations on them.

One could of course try to associate some number with each one of these.
It is widely known and easily proven that all of the above have countable

infinitely many properties defined in each one. This was proven in chapter
4 on theorem !!!!!!!

So any measure regarding the cardinality of the set of properties ex-
pressed in each one is irrelevant.

There are some studies on how can someone measure the expressive
power of a language but none relevant enough. Some interesting measure
would be to take into account th length of the expression of a specific prop-
erties in each Logic. But this becomes less useful when the optimal length is
reached because even Logics of higher complexity require the same number
of symbols.

For now then lets keep the idea of an increment in expressive power
happening through its grammar or it vocabulary. Thankfully for the purpose
of this thesis only strict inclusions are studied and therefore the idea of
increment has a one-way interpretation. In order though for someone to
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repeat such a process for logics of not strict inclusion a more detailed study
will be needed on this area.

So as proved already the relation exists but it is yet to be determined
how tight it is. We could also try to define it in the opposite direction.
Results in this case would look something like this:

If a family of graphs is checkable for all properties in Logic A
then the family of graphs has a bounded parameter k.

Now for a finite family of graphs one can argue that all parameters are
bounded. But thankfully i have here a proof that this does not interfeere
with my work

Theorem 5.2.1. On finite families of graphs a finite set of Logics is always
FPT- checkable.

The trick here is not to actually check all properties in a Logic rather
than label the models that satisfy the property.

Proof. Select a random enumeration of the graphs in the family F. For a
all these graphs we can select an upper bound for each possible parame-
ter that would be of use in th MC of a Logic. Out parameters would be
kL1, kL2, ...., kL for our N logics respectively.

So we define k = max(kL1) + .... + max(kLN) where the individual
parameters are parsing through all of our models.

k is an upper bound for all individual parameters in all of the graphs of
F and therefore for all Logics in our set the MCP is FPT parameterized by
k.

so we can focus on infinite families of graphs where the bounding of a
specific parameter would come from structural properties and by looking at
the definition of the class.

Could we after producing a bounded parameter result derive on the set
of properties that are checkable on those graphs?

Of course we could! Some results already exist but in a very local
scale. In fact based on the work already presented one can derive such
results after giving a closer look to the existing knowledge over parameters.
We will study such paradigms later on.

The above results are not necessarily the most recent in this area but for
the purpose of parameters of graphs they are more appropriate.

So now if someone finds a infinite family of graphs with bounded treewidth
he can immediately know that there must exist a property expressible in SO
Logic but not in MSO2 that is not checkable in FPT time for this family.

The above actually is not trivially a necessity but it can be proven.
As always when mentioning the parameter of a Logic class we refer to a
relationship of the form shown in defiminition (CHAPTER 2.4 somewhere)

53



Theorem 5.2.2. Assume logic classes A and B with B having a higher
expressive power than A. If a family of graphs F has parameter kA of Logic
Class A bounded but kB of Logic Class B unbounded then there exist a
property p expressible in B but not in A that is not checkable in FPT time
on F with parameter kB.

Proof. Suppose no such property exists i.e. all properties of B are FPT
checkable for F with parameter kB. Therefore Logic B is FPT-checkable for
F. But as in the converse of Courcelle’s theorem given by Seese which is or
the form i am assuming then if a family of graphs has an FPT checkable A
Logic then it must have bounded the corresponding parameter. ⊥

As we are slowly getting somewhere let me summarize progress made
this far.

1. While increasing expression power one must sacrifice an amount of
instances.

2. Structural Characteristics of graphs can be used to determine what
kind of properties are checkable form them.

3. With a little bit of further study we can correlate the times an algo-
rithm runs fast with the logic required to define a property !!!!!!!

4. Τhere might be a way to relativize the increment in expression power
with the decreasing of number of instances.

Finally i will focus on one of the listed questions from further up. Lets
just suppose that we have agreed on a measure that expresses how massive
is the expressive power of logic A. From now this measure will be denoted
as χ.

What can we say about 𝟋(χ) ? Technically χ is a mapping
from all possible Logics to the real numbers with respect to the
following properties:

• ∀ Logic A ∃ χ(A) ∈ ℜ

• iff A is more expressive than B then χ(A) ≥ χ(B)

Remember that our output is a measure concerning the number of in-
stances that correspond to a bounded value of kA

Theorem 5.2.3. 𝟋(χ) is decreasing.
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Proof. We need to prove that

∀x, y : x ≥ y → 𝟋(x) ≤ 𝟋(y)

.
x ≥ y means that logic Ax is more expressive than Ay ⇒ ∀p ∈ Ay, p ∈ Ax

Suppose now that 𝟋 is not decreasing ⇒

∃x, y x ≥ y : 𝟋(x) ≥ 𝟋(y)

That would mean that there are properties p expressible in Ay that can be
checked in FPT time in less instances ( Sy ) when p is expressed in Ay than
when expressed in Ax. That would mean that ky is stronger than kx which
is a contradiction according to definition 5.1.2

5.3 Parameterized Framework
Although the work done this far is quite enlightening it lacks a certain

amount of specific definitions and results. To continue further without worry
for results being not definite enough there is some work to be done.

As you see above all reductions and proofs take place in a more mathe-
matical framework. In order to be positively sure that not only the correla-
tion 𝟋 exists but all mentioned properties are true i have to translate them
in the parameterized framework.

To begin…

The first result of section 5.1 is theorem 5.5.1. regarding the certainty
of an existent parameter that classifies the MCP of a Logic as FPT.

According to the phrasing of 5.1.1 we have to describe the transformation
of a weft 0 circuit for logic A to a weft 0 circuit for the logic A’.

Of course without knowing the increment it is very difficult to design a
specific circuit the following can be done:

The increment will be of some form of extra symbols , Predicates or rules.
Without any massive assumptions i will use a primitive form of enumeration
of these changes.

Proof. Note C the family of circuits that recognizes property p ∈ A . The
Logic A’ will be the set of all properties expressible in A repeated an enu-
merable infinity number of times , each time with another aspect of the new
rules being applied. Therefore each property p’ ∈ A’ will be a combination
of a property p ∈ A and expansion from A’ (even if the property in A is an
empty string) .

Only thing remaining is to describe a parameterized reduction between
the circuit recognizing p to a circuit recognizing p’ where p is the part of p’
in A.

55



Figure 5.3: A circuit recognizing a property p ∈ A for k0 = 2

Each one of the changes in A will be represented on a gate of C’. Since
C is of weft 0 each of the gates in C will have an in-degree at most k0 ⇒ in
C each level contains at most a

g(k) ∗ poly(n) (5.1)

gates.

* the above number is a result of each level being composed of k
combinations of the previous one. This process only happens for
finite polynomial over n steps and therefore each gate of a level
cannot have more than 5.1 inputs from gates of the previous one.

A gate in C’ will always be a rule being applied on a property p ( which has
its own weft 0 circuit) or on gates of C’.
We can recursively solve the case where it is applied on gates of C’ by
explaining what happens in gates of C. Similarly with theorem 2.2.1 we
assign A’ the parameter k′A = g(k) ∗ poly(n).

Now no gate in C ′ is of unbounded in-degree ⇒ C is of weft 0.

The immediate next thing we need to interpret is theorem 5.1.2. But
this is not something that could be deciepted through circuits due to the
fact that circuits do not take into account instances that do no have the
parameter bounded.
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Figure 5.4: The gate of the circuit recognizing property p′ ∈ A′

However the results of table 5.2 can all be interpreted through similar
procedures.
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Chapter 6

Parameter Analysis

In this chapter the graph metrics we defined in section 2.5 will be studied
autonomously at first and later in contrast with each other. Here i will try
to start the needed work in order for the previous chapter’s results to be
interpreted in specific structures.

6.1 Treewidth
As follows from the definition what is the most important thing to deter-

mine treewidth ( noted form now on as tw) is the tree decomposition. This
will be also the base of the following calculations.Since tree decompositions
are heavily counting on labels our graphs will also be labeled, undirected
ones. Our purpose is to determine at least approximately how massively
bounding tw by k will affect the number of instances is size n. Si

For starters we will use the following which are considered trivial.

• The complete graph of size n has
(
n
2

)
= n ∗ (n− 1)/2 edges

• In total there exist 2n∗(n−1)/2 posible subsets of these edges and each
one corresponds to a different labeled graph.

Definition 6.1.1. For handiness purposes i will use form now on the term
Tk to describe the number of graphs of size n and treewidth equal to k .

Note here that even if Tk is deterministically described it will not mean
that we have a way to give an upper bound on n depending only on k. This
study is focusing on number of instances and not specific ones.

If a graph is of bounded tw k then there exists a tree decomposition
where the maximum number of nodes in labels is k + 1.

in order to produce a first result we will need the following:

Definition 6.1.2. A smooth tree decomposition is one for which each bag
has k+1 nodes and all the neighboring bags have k common nodes .
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Theorem 6.1.1. For all tree decomposition of tw k there exist a smooth one
of tw k.

Proof. Given a tree decomposition of size k a smooth one can be constructed
by applieng the following in each edge(p.q) of the tree decomposition.

1. if Xp ∈ Xq then contract pq and let the bag be Xq . Siimilarly if
Xq ∈ Xp

2. if Xp ⊈ Xq but |Xq| < k + 1 take any node from Xp and add it to Xq

3. if |Xp| = |Xq| + k + 1 and |Xp − Xq| > 1 then interpolate new bags
between them.

So! using the above we say that when having a graph of size we are now
looking for the ones that have a smooth tree decomposition of tw k. This
means that we need to determine how many different tree decompositions
of tw k exist over a set of n nodes.

We can also use the following theorem by Bodlaender[?] :

Theorem 6.1.2. If T is a smooth decomposition of G then T contains
exactly |V (G)− k| nodes.

The proof of this will be gives through the following procedure.
Each bag here is a set of k + 1 nodes since T is smooth. And each node

can pick from a pool of n nodes
So as a first result we know that the graphs of tw k are at most(

n

k + 1

)|V (G)−k|
(6.1)

Now of course when considering bounded by k tw we are not focusing
on the tree decompositions of tw exactly k. But b using the above even a
graph without edges will be mapped to a tree decomposition of tw k we are
safe this far.

Now we need to make sure that on the number of (1) we are taking into
account valid tree decompositions. That means we need to subtract from
(1) a number of all the trees that are not actually tree decompositions of
their labels.

We have |V (G) − k| bags and we want all of them to have k common
label nodes with their neighbors. So Lets construct one X0 at random by
inserting k nodes on the label. In equation (1) we where construction the
other by inserting at random k1 on the next one etcetera. Now for each one
of its adjacent ones we have to choose

(
k+1
k

)
that will be duplicated and can

only replace one of the X0 node with one of the |V (G)− k − 1| remaining.
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Figure 6.1: Constructing the new nodes

So far the construction of each one of the new nodes we are always picking(
k+1
k

)
from the existing neighbor and adding one more label that must not

be already in use.
In the above figure for each new bag k labels must remain same. When

choosing the k labels that would be reused we are safe since we are only
expanding on the existing tree and therefore the new labels since they existed
on a valid bag will not have to be the reason for any new edges besides the
one with the parent node.

When choosing the new label that will be added to the bag we must be
very careful. If the new label is in use somewhere in the tree adding it on
the new node would cause a circle 6.2.
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Suppose we are construction node i. If we are construction node i there
are i−1 nodes already in the tree decomposition and we have to choose one
of them as the parent of our current node This however will not contribute
to the total number since we are not actualy interested in what order each
bag node will be added to the tree decomposition. We can pick at random
the k labels that will be reused from the previous node and we have to also
pick the new label from the ones that have not been used. Note here that
Since we are adding the i − th node in the tree we have used so far i − 1

Figure 6.2: Reusing labels would cause a circle

extra labels. So right now in our tree there are used

k + i, i = 1, . . . , |V (G)| − k − 1

which means there are left |V (G)| − k − i to choose from.
The product for all i would give us the number of all possible smooth

tree decompositions of tw k = T ′
k .

Now since all tree decompositions of tw k have a smooth one the number
here will be an upper bound for Tk

T ′
k =

(
V (G)

k + 1

)
∗
|V (G)|−k−1∏

i=1

i ∗
(
k + 1

k

)
∗ (|V (G)| − k − i) =
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(
V (G)

k + 1

)
∗
(
k + 1

k

)|V (G)|−k−1

∗
|V (G)|−k−1∏

i=1

i ∗ (|V (G)| − k − i) =

[

(
|V (G)|
k + 1

)
∗ (k + 1)(|V (G)|−k−1) ∗ (|V (G)| − k − 1)2! (6.2)

As you will see the above seems to be very accurate since we can test it
on easy cases. For instance:

On cliques were k=n-1 we have :

(6.2) =

(
|V (G)|
|V (G)|

)
∗ |V (G)|0 ∗ (0)! =

1 ∗ 1 ∗ 1 = 1

Which is exactly the number of graphs of size |V (G)| with tw |V (G)| − 1
(K|V (G)|) So right now we have the following:

Tk ≤ T ′
k =

(
V (G)

k + 1

)
∗ (k + 1)(|V (G)|−k−1) ∗ (|V (G)| − k − 1)2!

The above then can be translated into an upper bound for graphs of bounded
k by calculating the sum over all k.

k∑
j=1

(
V (G)

j + 1

)
∗ (j + 1)(|V (G)|−j−1) ∗ (|V (G)| − k − 1)2! (6.3)

Our first approximation about the number of size n graphs with bounded
by k tw was : (

n

k + 1

)|V (G)−k|
6.1

Result 6.3 is obviously much better witch can be shown through trivial
calculations.
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To summarize then about treewidth we have that form all possible graphs
of size n only 6.2 are of tw bounded by k hence the quantity:

k∑
j=1

(
V (G)

j + 1

)
∗ (j + 1)(|V (G)|−j−1) ∗ (|V (G)| − j − 1)2!

2(
|V (G)|

2 )
(6.4)

As shown in the following diagram for some usual cases of real world input
and in order to be able to relativize with other graph metrics later on.

6.2 Cliquewidth
In the search for cliquewidth one will notice from the definition that there

in no such thing as a clique decomposition or something similar as to the one
existing with treewidth. Cliquewidth originates from a constructive process
focused on generating the original graph. This means that we cannot use
the same teqnique or a similar one to find an upper bound to the quantity
of instances of cliquewidth bounded by k .

The same trivial equations apply for the whole of graphs of V (G) = n
nodes.

As shown in section 2.5 cliques are of cliquewidth 2 as are very few other
graphs.

Now the reader must keep in mind intuitively that the more we deviate
from a clique of size n the larger the cliquewidth of the graph gets.

Now as per the definition there are four kinds of opperations one can
use to produce a graph. We are comparing for a graph of V (G) nodes and
therefore we can derive the following:

• There will be exactly V (G) in total node creations ( easily since we
end up with this much nodes in the graph )

• There will be exactly V (G)−1 disjoint union operations ( a very short
proof of this is given in the appendix )

• There will be at most n− 1 recoloring operations ( worst case = every
recolor operation causes the change of color of exactly one node ).

• There will be at most (n − 1) ∗ (k − 1) connection operations (This
requires a short proof)

Now of the create operations the first two must necessarily happen first
since none of the rest can can take place when less than 2 nodes exist in the
graph.
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What i am going to do is i am going to try to produce an upper bound
for the total number of possible graphs of cliquewidth k by counting how
many sequences of the above opperations can take place.

Now as i said we have cliquewidth k and therefore can utilize k colors in
the creation of the graph . However i do not want to discriminate between
lets say a pink and a blue clique of size n. Therefore since i am demanding
V (G)− 1 recoloring operations in means that in the end i will be left with
a graph of a unique color. In the flowing relations this will be translated to
the mathematical property that when choosing a color for a new vertex we
can pick from k − 1 colors. This is not of course the case. What actually
happens is that each time we multiply and event by the number of possible
colors we are then dividing by the number of isomorphic regarding color
graphs. So:

Definition 6.2.1. From now on:

• The number of graphs of cliquewidth at most k will be noted as Ck

• The percentage of graphs of cliquewidth at most k will be noted as pk

To begin giving some upper bounds :
There will be n vertex creations in the construction. When in a new

number of vetrices we have to take into account the graphs concerning this
many edges. There are (

|V (G)|
i

)
, i = 1 . . . n

ways to pick i vetrices from the final |V (G)| that will exist in the graph.
For each one of them now we can perform a number of the other op-

erations given in the definition. Since i am counting possible graphs per
number of nodes involved disjoint union are not counted as will be resulting
in a change of the number of vetrices studied. For the rest though we can
say:

1. Each create operation correspond to an initial choice of color for the
vertex created. the number of colors is k but as explained above this
results in k − 1 possible choices

2. Each connect operation has at most
(
k
2

)
possible inputs.

3. each recolor operation has at most
(
k
2

)
possible inputs.

Now we are close to a first result.
Before a final solution is given i will explain a final point. The above

operations have been left free to have as possible input any number of the
colors and such. However the reader will probably notice that in many cases
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there are not yet k colors in the graph yet. A closer look though will reveal
that by not determining the sequence in which the disjoint union operations
took place we can at least assume for the purposes of an upper bound that
all above combinations are allowed and the way they will be arranged is
given by their input.

Figure 6.3: First steps of the sequence describing graphs of cliquewidth k

For a number of nodes n0 There are

c′k =

(
|V (G)|
n0

)(k−1)

∗ (n0 − 1)(
k
2) ∗ [(n0 − 1) ∗ (k − 1)](

k
2)

=

(
|V (G)|
n0

)(k−1)

∗ (n0 − 1)2∗(
k
2) ∗

(
k

2

)(k2)
(6.5)

The numbers (n0 − 1)2∗(
k
2) ∗ (k − 1)(

k
2) correspond to the possible choices on

can make when using the recolor or the connect operations . Summing for
all n0 up to k we will have a first result:

ck ≤
n∑

i=0

(
|V (G)|
i

)(k−1)

∗ (|V (G| − 1)

2∗(k2)

∗ (k − 1)(
k
2) (6.6)

The above result seems very reasonable since for k = 2 it count all
cliques with size up to n plus some extra graphs of small cliquewidth per
vertex number

k = 2 ⇒ c2 ≤
|V (G)|∑
i=0

(
|V (G)|
i

)
∗ (|V (G)| − 1)2

Notice that in the above numbers while computing the sum for all i,
i replaced i with n in term corresponding to choices over recoloring and
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connection operations. This is because in the total number for ck even
smaller cliques and graphs are considered as part of a graph of n vetrices in
total depending on the disjoint union operations. This means that a recolor
or connect operation can indeed have as an input any of these vetrices.

Note here that the uper bound for small |V (G)| is very loose because
of the generalizations made in order to construct a unified result. However
after not much increment in n ( which is after all the case we are interested
in the bounds become way more realistic ) Much to our luck result 6.6 can
now be further analyzed as follows:

6.6 = (|V (G)| − 1)2∗(
k
2) ∗ (k − 1)(

k
2) ∗

|V (G)|∑
i=0

(
|V (G)|
i

)(k−1)

And in the more familiar case were k = 2

6.6 (k=2) = (|V (G)| − 1)2 ∗
|V (G)|∑
i=0

(
|V (G)|
i

)
=

(n− 1)2 ∗ 2n

Now as a final result we can describe the number pk defined in the
beginning of this section:

pk ≤
(|V (G)| − 1)2∗(

k
2) ∗ (k − 1)(

k
2) ∗

|V (G)|∑
i=0

(
|V (G)|
i

)(k−1)

2(
|V (G)|

2 )
(6.7)

6.3 Branchwidth
We have seen this far how one can derive upper bounds on the number

of graphs that have some specific parameter bounded. In this attemt i
tried to utilize some part of the definition to construct an somewhat loose
numeration of possible cases. In the case of Branchwidth unfortunately such
techniques will not do. As seen in the definition the branch decomposition all
of the decompositions have the same structure ( a tree with |E(G)| leaves ).
The only thing that changes over this structure is which edge of the original
graph will be matched to each leave. Then the branchwidth is calculated by
checking on each one of the branch decompositions for a specific quantity.

Facing this problem i will try to approach this matter from a different
angle.

Suppose that we are in possession of a graph G of branchwidth k. This
means that on all of its branch decompositions all of its possible separators
are of size at most k. In is branch decompositions that would mean that
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one each on every one of them for every inner edge of the decomposition at
most k vertex labels will exist in both sides of the cut. Now in order to be
able to produce specific numbers we define:

Definition 6.3.1. For a graph G=(V,E)

• The number of graphs with size n of a branchwidth k will be denoted
Bk

• The percentage over all possible graphs will be denoted as pk

Now some easy first useful facts are:

Theorem 6.3.1. If T is the branch decomposition of graph G=(V,E) then
the branch decomposition has exactly E(G) leaves and exactly 2 ∗ |E(G)| − 3
edges

Proof. We will first construct a binary tree from the decomposition:

1. Choose arbitrarily a vertex u

2. Hang the hole tree from vertex u

3. Delete vertex u from T

Now we have a tree T’ that is binary ( for each inner node of the decom-
position one node has assumed the role of the father for the other 2) with
|E(G)| − 1 leaves.

For T’ we know tat the number of inner nodes is (|E(G) − 1) − 1 =
|E(G)| − 2 ⇒ T ′ currently has

2 ∗ (|E(G)|)− 3 nodes.⇒ T ′ has2 ∗ (|E(G)|)− 4

edges (this is an elementary result)
As a final step we re-add vertex u to T’ and the number of edges changes

only by one giving a total of 2 ∗ (|E(G)|)− 3 edges.

So now we know that given a Branch decomposition there are 2∗(|E(G)|)−
3 possible places we can cut the tree.

Since our initial graph G is of Branchwidth k no matter where we cut
we will end up with two subgraphs that share ≤ labels.

I will to inversely construct from these facts a way to derive possibilities
of origination.

So for a graph that we have the information that its branchwidth is k
we know that there is optimal branch decomposition (e.i the one resulting
in a max e-separation of size k). Lets try to count then all the graphs of n
vetrices that would result in a such.
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Lets for starters see what happens if there is only one edge of the de-
composition T that reaches the number of k common label nodes for each
side.

By cutting there we end up with two trees T1&T2 for that contain in
n1&n2 labels respectively. For the labels of T2 we know that k + 1 must be
shared with the labels of T1.

So in such a case we have(
labels(|V (T1)|)

k + 1

)
possible different graphs that such a could have originated from.

To intuitively understand the above i am mostly trying to the graphs
that have exactly one e-separation of branchwidth k+1 and counting all the
different vetrices that could be a part of it. Since i am looking for an upper
bound the largest quantity that labels(|V (T1)|) could have is |V (G)|−k−1 .
If it contained more labels then it couldn’t possibly share k+1 with the other
side T2 So: for a graph containing exactly one e-saparation of branchwidth
k1 we have the upper bound:(

|V (G)| − k − 1

k + 1

)
(6.8)

How many such e-separations can we have? Well as proved earlier we
can cut the decomposition in 2∗(|E(G)|)−3 many places. But! quite a lot of
them would not be eligible. We know that even branchwidth 1 separations
did not originate form cuts made to edges that had leaves as one endpoint.
Since the labels that correspond to such a cut are 2 the separation number
would be 1 in all cases. Since branchwidth is computed as the maximum
number of all such cuts these cases should not be counted. The leaves are
of course |E(G)| and therefore we are left with |E(G)| − 3 meaningful cuts.

And of course trivialy E(G) is bound by
(|V (G)|

2

)
. So when choosing an

eligible graph that could result in a branch decomposition of branchwidth
k we are also making a choice on which of the inner nodes of T the large
e-separation took place.

We could have each one of those positions to actually be a large e-
separation and for each one we have 6.8 choices for the possible shared
labels.

(

(
|V (G)|

2

)
− 3) ∗

(
|V (G)| − k − 1

k + 1

)
(6.9)

Now there is one extra bound we can derive. If a Graph G has branch-
width k and n vetrices then we can derive an upper bound for E(G). This is
very important since our current result is growing very fast exactly becase of
all the possible edges in G. So i am looking for the largest number of edges
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Figure 6.4: There are |E(G)| − 3 meaningful cuts

( because i want an upper bound ) that if only one more edge is added the
graph cannot have a branchwidth k .

It is very easy to prove as a first step that all graphs that have a minimum
degree of k + 2 cannot have a branchwidth of k. Therefore i am looking for
the number of edges in the most complete graph of minimum degree k + 1.
Now it very easy to say that this graph since is it the more complete would
only have one vertex of k + 1 degree. All the other vetrices would have
maximal allowed degree.

So the lonely edge u has k+1 neighbors. Those are the only vetrises that
are allowed to connect with all the others in the graph.

The |V (G)| − k − 2 remaining can form a clique innerly and will be
connected with the neighborhood of u but not u. So in total we have

α =
(|V (G)| − k − 2) ∗ (|V (G)| − k − 3)

2
+ (k + 1) ∗ (n− 1)− (k + 1) ∗ k

2

The last term is due to the edges between the vetrices of N(u) being counted
twice in the previous term.

Now we can count the common labels in both size of the cuts for every
possible combination of cuts and for every possible number of cuts. We can
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now summarize all that up to :

Bk ≤
(
|V (G)| − k − 1

k + 1

)
∗
α−3∑
i=0

(
α− 3

i

)
and

pk ≤

(|V (G)|−k−1
k+1

)
∗
α−3∑
i=0

(
α− 3

i

)
2(

|V (G)|
2 )

=

(|V (G)|−k−1
k+1

)
∗ 2α−3

2(
|V (G)|

2 )
(6.10)

Te above is a very accurate result since it can be verified for small values
of n and k.

6.4 Pathwidth
Pathwidth is another metric on graphs tightly associated with a decompo-

sition. In this case its a Path decomposition as presented in 2.5 . Following
from the definition we can produce easily a trivial result.

If the graph is of pathwidth k then the largest of its nodes will contain
k + 1 labels. To make things easier on a first attempt we can assume that
all nodes contain this much labels. We can even do that deterministically
using the following steps:

1. Decide a start and an end for the path decomposition and enumerate
the nodes accordingly

2. starting from node 0 follow the decomposition until a node with k+1
labels is reached.

3. pick a label and add it to all neighbor ( as far as the next k + 1 node
or the end of the path ) nodes that contain less than k + 1 nodes.

4. repeat until all nodes in the path contain k + 1 labels

The above procedure is efficient and will produce a valid path decom-
position. A specific label will only appear in a connected subpath of the
decomposition. In figure 6.6 we see how on can reuse labels of nodes. Here
we do not have the property of smooth tree decompositions as we had in
treewidth but we can still produce some results.

Definition 6.4.1. The number of graphs G with |V (G)| nodes and k path-
width will be denoted as Pk
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Figure 6.5: Filling up nodes with adjacent labels

The above seems very similar to the treewidth case since we again could
construct bags of size k + 1

Before we start applying tighter bounds on the number of decompositions
we can have a first estimation of Pk Without knowing yet how many nodes
are in the path decomposition that an upper bound of the number of possible
path decompositions. There can be(

|V (G)|
k + 1

)
(6.11)

many nodes on the path decomposition.

In no case of course all of the above are acceptable path decomposi-
tions.By choosing k + 1 vetrices of the original graph ( with an arbitrary
enumeration of its vetrices ) we will positively end up with a situation where:

• There exists a bag B1 which contains labels ui, uj , uk.
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• There exist a bag B2, which contain labels ui, uj but not uk

• There exist a bag B3 which contain labels uj , uk but not ui

This can be easily shown if one considers that for the number of nodes
in the path decomposition we requested all possible unique combinations of
k + 1 labels. So for a short proof:

Figure 6.6: We cannot have all combinations of k+1 labels

Proof. Say that all bags that contain label u1 have been connected through
a path graph. We can pick two different labels from two non consecutive
bags of this path graph. Such labels will always exist since on each new
node of the graph at least one new label will appear. Focusing on those two
labels no say (uk, u′k) there will be a case in the later on bags to be added to
the path graph were they will appear in the same set of labels ( i.e. a new
bag) since all sets that contain labels u1 have been used already the above
holds

In the above case all of these bags must be connected but there is no
way that this is done through a path graph.

So even though the above is not tight we do know that no more than(
|V (G)|
k + 1

)(|V (G)|
k+1 )

exist.
We can however produce better results. The first thing we will use is the

following:

Theorem 6.4.1. For a path decomposition graph P over a graph G of |V (G)|
nodes there will be at most |V (G)| − k bags in T.

The proof of this follows from the similar result about treewidth in sec-
tion 6.1 . Only difference here is that although there is no proof that the
bags will have k common labels we can accept this numbers as an upper
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bound since for the construction of a new bag at least one label changes and
the old one can never be used again.

Now we can summarize a similar result only for a slightly smaller per-
centage of graphs:

T ′
k =

(
V (G)

k + 1

)
∗
|V (G)|−k−1∏

i=1

(
k + 1

k

)
∗ (|V (G)| − k − i) = (6.12)

Notice how the only difference with the similar treewidth result is that in
the treewidth case there was for each new bag i a multiplicative i to express
the number of choices for a parent bag of the current one. In our case no
such term exists since the resulting graph must be a path one.

We can head forward now and calculate the final result which is

k∑
j=1

(
V (G)

j + 1

)
∗ (j + 1)(|V (G)|−j−1) ∗ (|V (G)| − k − 1)!

This clearly not only results in less graphs of bounded pathwidth than
bounded treewidth k but also maintains the good properties of 6.3 over low
k.

To calculate the final percentage we have the similar case of

pk ≤

k∑
j=1

(
V (G)

j + 1

)
∗ (j + 1)(|V (G)|−j−1) ∗ (|V (G)| − j − 1)!

2(
|V (G)|

2 )
(6.13)
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Chapter 7

Parameterized Algorithmic
Meta-Theorems

In this chapter all the work done above will be brought together in order
to describe independent results as part of this larger framework. There are
some Logic classes that have been studied and associated with a parame-
ter already. For these logics with or without strict inclusion relationships
between them i will be explaining how the trade-of function described in
chapter 5 works .

7.1 Logics and families of Graphs
Note here that the existence of such theorems is the reason for the initia-

tion of this hole approach. Existing results regard the following classes:

7.1.1 FO
In this section, we investigate the complexity of the problems Eval(FO)

and the MC(FO)which are respectively:
Definition 7.1.1. Let Φ be a class of formulas.

• The evaluation problem for Φ is the following problem:

EVAL( Φ)
Input: A structure A and a formulaϕ ∈ Φ.
Output: �(A)

• And the Model Checking would be the above but restricted to the
decision version:

MC( Φ)
Input: A structure A and a formulaϕ ∈ Φ.
Output: Decide whether �(A) holds.
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A crucial parameter is the width of a first-oder formula ϕ, which we
define to be the maximum number of free variables of a subformula of ϕ.
The width is trivially bounded by the total number of variables appearing
in ϕ, and, of course, by the length of ϕ.

Theorem 7.1.1. Eval(FO) and MC(FO) can be solved in time O(|ϕ| ∗
|A|w·w), where w denotes the width of the input formula �.

Proof. The recursive definition of ϕ(A) immediately gives rise to a recursive
algorithm. Observe that for a formula ϕ(x1, . . . , xk), computing ϕ(A) from
the immediate subformulas of ϕ requires time O(w∗|A|w). For example, sup-
pose that ϕ(x1, . . . , xk) := ψ(xi1, . . . , xir)∧χ(xj1, . . . , xjs), where {i1, . . . , ir}∪
{j1, . . . , js} = [k]. Suppose that {i1, . . . , ir} cap{j1, ..., js} = l1, ..., lt. We
sort the tuples in the relations ψ(A) and χ(A) lexicographically by the com-
ponents l1, . . . , lt(based on an arbitrary order of the underlying universe A).
Then we ’join’ the two sorted lists to obtain ϕ(A). If we use bucket sort, the
sorting requires time O(t ∗ |A|max{r,s}k). Joining the two lists requires time
O(w ∗ |A|k) . Since the number of subformulas of a formula ϕ is bounded
by |ϕ|, this algorithm achieves the claimed time bound.

Corollary. Let k ≥ 1, and let FOk denote the fragment of FO consisting of
all formulas with at most k variables. Then Eval(FOk) and MC(FOk) can
be solved in polynomial time.

To be absolutely precise here, we have to add O(|enc(A)
|totherunningtime.Thisisbecausethewholeinputhastobereadtoextracttherelevantpartsandbuildtheappropriatedatastructuresusedbythealgorithmdescribedabove.

Actually, it can be proved that MC(FO2 ) is complete for PTIME un-
der logarithmic space reductions. Occasionally, we are interested in the
restrictions of the problem to a fixed formula ϕ.

Corollary. For every first-order formula �, the eval(ϕ) and MC(ϕ) problems
can be solved in polynomial time:

This result can be strengthened. It is not hard to see that the problem
MC(ϕ) belongs to the circuit complexity class uniform-AC0 .

Let us turn to the complexity of the model-checking problem.

Theorem 7.1.2. The following hold:

• For every t ≥ 1, the problem MC(Σt ) is complete for the t-th level Σt
P

of the polynomial hierarchy.

• MC(FO) is complete for PSPACE

The proof for the above is not in the spectrum of this analysis. However
we can see how the above are not very useful in the case that one is building
an algorithm that check a FO logic property. To that end we know:
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Theorem 7.1.3. Fix l > 0. Then the model-checking problem for FO on
structures of bounded by k degree is fixed-parameter linear.

The proof of the above can be found in [38]. An effective algorithm is
presented where all structures up until a bounded by l integer are evaluated
over the property in FPT time.

Can one prove a similar result for FO queries on arbitrary struc-
tures?

The answer is most likely no, assuming some separation results in com-
plexity theory . In fact, these results show that even fixed-parameter tractabil-
ity is very unlikely for arbitrary structures. Nevertheless, fixed-parameter
tractability can be shown for some interesting classes of structures.

Theorem 7.1.4. [22] If C is a minor-closed class of graphs which does not
include all the graphs, then model-checking for FO on C is fixed-parameter
tractable.

The proof of the above is derived from the following facts. H is an
excluded minor of a class of graphs C if no G � C has H as a minor. If such
an H exists, then C is called a class of graphs with an excluded minor.

• If C is a minor-closed class of graphs, membership in C can be verified
in Ptime [9]

• If C is a Ptime-decidable class of graphs with an excluded minor, then
checking Boolean FO queries on C is fixed-parameter tractable ([42]).

Corollary. Model-checking for FO on the class of planar graphs is fixed-
parameter tractable.

Proof. Planarity is a property with the finite set of obstructions being =
{K5,K3,3} so 7.1.4 holds.

So finally we are in possession of a parameter (vertex degree) that defines
the instances that the Model-Checking Problem of FO is tractable over.

The corresponding percentage for |V (G)| = n and k the bound of the
vertex degree is: The most full graph of degree bound by k is a k-canonical
graph of n vetrices. Therefore all the possible graphs of degree bound by k
are:

2

n ∗ k
2 (7.1)
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7.1.2 MSO2 - Courcelle’s Theorem
Courcelle’s Theorem is a logic-based meta-theorem for establishing that

various graph-theoretic properties are decidable in linear FPT time, when
the parameter is input graph treewidth. Similar results were obtained inde-
pendently by Borie, Parker and Tovey [5].

Courcelle’s Theorem has the form:

If the property of interest is expressible in MS 2 logic, then, pa-
rameterizing by the treewidth of the input, it can be determined
in linear FPT time whether the graph has the property.

More formally:

Theorem 7.1.5. If F is a family of graphs described by a sentence in
second-order monadic logic, then � F has finite index in the large universe
of t-boundaried graphs.

In the language of logic, we consider structures that satisfy the relevant
formulae. Here the structures are graphs and we say that G ⊨ ϕ for a
formula phi if the interpretation of ϕ in G is true.

TW φ-Model Checking for ϕ
Input: A graph G = (V , E), and Property φ.
Parameter: tw(G) = t + |φ|
Output: ”Yes” iff G |= φ , ”No” otherwise.

The main theorem means that this problem is linear time FPT. Later,
we will look at a theorem of Seese which is something of a converse.

Proof. We outline the idea of the proof.

1. Given a graph G, compute, in linear time, its tree decomposition,
consisting of a tree T and a set Bt for each node t of T This can be
done thanks to Bodlaender [31] .Since the treewidth is fixed, say k,
each Bt is of size at most k + 1, and thus all the graphs generated by
Bt ’s can be explicitly enumerated.

2. This allows us to express MSO quantification over the original graph
G in terms of MSO quantification over T. Thus, we are now in the
setting where MSO sentences have to be evaluated over trees.

3. The above can be done in linear FPT time: Suppose we have a sentence
Φ and a structure A (string or tree). We convert Φ into a deterministic
automaton. This can be done thanks to the theorems of Buchi [1] A
language is definable in MSO iff it is regular. and : A set of trees is
definable in MSO iff it is regular. due to Thatcher and Wright [40]

4. Evaluate the formula over the constructed automaton.

78



Following the above steps one can evaluate in linear FPT time anyMSO2

formula .

Anothem more detail proof of this that describes an aglorithm for doing
the above can be found in the book of Downey and Fellows [35]

Detlef Seese proved a converse to Courcelle’s Theorem. Note that this
is extremely important as it fullfils a situation as the one described in the
first row of table 5.1

Theorem 7.1.6. (Seese [24]) Suppose that F is any family of graphs with
a decidable monadic second-order (MSO2) logic. Then, there is a number
n such that for allG ∈ F , the treewidth of G is less than n.

Notice the very interesting dichotomy from linear time decidability: the
monadic second-order logic of bounded treewidth graphs to the undecidabil-
ity of the monadic second-order logic for families of graphs failing to have a
bound on the treewidth.

7.1.3 MSO1

The material on Courcelle’s Theorem and Seese’s Theorem both looked
at the MS2 logic based on the two-sorted language with predicate symbols
for edges, vertices, and incidence. As we mentioned earlier, there is a long
history concerning the “basic” monadic second-order logic where we have
no predicate for edges but need binary relations for these objects. Now, the
expressive power changes.

Naturally, the methods we have used for Courcelle’s MS2 Theorem still
work. Seese [24] was able to prove the following theorem

Theorem 7.1.7. If a class of planar graphs has a decidable MSO1 theory,
then that class has uniformly bounded treewidth.

This is somewhat of an analogous of theorem 5.1.3.
The decisive lemma is the following.

Lemma 7.1.8. Let K be any class of graphs such that for every planar graph
H there is a planar G � K with H � minor G. Then, the monadic second order
(MSO1) theory of K is undecidable.

The principle difficulty in the proof is then to prove that MSO1 inter-
pretability occurs. This is quite intricate and heavily relies on planarity
to be able to interpret the class of grids of size n into the class as minors.
We refer the reader to [24] for details. Subsequently, Courcelle and others
have extended Theorem 7.1.7 to much wider classes of graphs. In partic-
ular, Courcelle and Oum have Seese’s MS2 theorem extended to MS1 via
the notion of cliquewidth, a width metric with a similar parse language to
treewidth, as we saw in chapter 6. That is, Courcelle and Oum prove the
following.
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Theorem 7.1.9. (Courcelle and Oum [20]) If a set of directed or undirected
graphs has a decidable MSO1 theory (even with the addition of the ”even
cardinality” predicate), then it has bounded cliquewidth.

7.1.4 Matroid MSO

The analytical definition of Matroid MSO is given in the appendix .2. It
is quite similar with the definition of simple MSO but it allows of elements
of countably infinite cardinality in a Structure.

The idea that a graph is tree-like if it can be decomposed entirely across
small separations can be extended to algebraic structures, and, in particu-
lar, matroids using algebraic independence instead of topological separation
as the central decomposition criteria. This programme was initiated by
Hliněný and Whittle [13, 14], and is part of a long-term program to gener-
alize the Graph Minors Project of Robertson and Seymour (the originators)
to an analogous matroid structure theory (and associated FPT algorithmic
methods). In the setting of matroid theory, matroid branchwidth is easier
and more natural to define than the matroid analog of treewidth .In the def-
inition of branchwidth for graphs, the key idea in the representation of the
separation properties is to make a “data-structure” for the graph, where the
edges of the graph (the essential elements of topological connectivity), are
in one-to-one correspondence with the leaves of a ternary tree.In the setting
of matroids, we need an analog of the notion of topological separation, and
this is provided by the rank of a set of vectors, a measure of algebraic linear
independence of the set of vectors. The connectivity or width function is

λ(A) = r(A) + r(E\A)−r(E) + 1

, where r is the rank function of the matroid. A separation can be defined
in the same way as for graphs, and this results in a partition of the set E
of matroid elements into two subsets A and B = E\A. The branchwidth
of a graph and the branchwidth of the corresponding graphic matroid may
differ. For instance, the three-edge path graph and the three-edge star have
different branchwidths, 2 and 1, respectively, but they both induce the same
graphic matroid with branchwidth 1. Mazoit and Thomassé showed also
that for graphs that are not forests, the branchwidth of the graph is equal
to the branchwidth of its associated graphic matroid.

Robertson and Seymour conjecture that the matroids representable over
any finite field are well-quasi-ordered by matroid minors, analogously to the
Robertson– Seymour theorem for graphs. So far, this conjecture has been
proven only for the matroids of bounded branchwidth. It is possible to prove
a version of Courcelle’s Theorem for matroids of bounded branchwidth. The
syntax consists of variables for matroid elements and predicates e ∈ F where
F is a variable for sets of elements, and indep(F ) which is true if and only
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if F is an independent set. The above description is clearly more expressive
than that of MSO.

Theorem 7.1.10. (Hliněný [15]) Let F be a finite field and φ a sentence of
MMS, matroid monadic second order logic as described above. Suppose that
the n element matroid M is given a vector representation over F together with
a branch decomposition of width k. Then there is a linear FPT algorithm
(in F, �, k) deciding whether M ⊨ .

7.2 Parameter Correlations
For the parameters studied in Chapter 6 and utilized in the section there

are some results that instead of describing how strong they are as parameter
describe a set of bounds between them. These bounds are more suitable
for expressing the impact of changes in one parameter to the others. Such
relations contain very useful info that can be utilized in the parametric
algorithm design but they are less important in the comparison of expressive
power.

We can say for the following:

Pathwidth Since path-decompositions are a special case of tree decompo-
sitions, the pathwidth of any graph is greater than or equal to its treewidth.
We can deduce easily therefore that for a graph G:

tw(G) ≤ pw(G)

There is not yet an upper bound for pathwidth in measurement of
treewidth.

Cliquewidth The graphs of treewidth w have clique-width at most 3 ∗
2w−1. The exponential dependence in this bound is necessary: there exist
graphs whose clique-width is exponentially larger than their treewidth.[17]
In the other direction, graphs of bounded clique-width can have unbounded
treewidth; for instance, n-vertex complete graphs have clique-width 2 but
treewidth n − 1. However, graphs of clique-width k that have no complete
bipartite graph Kt,t as a subgraph have treewidth at most 3 ∗ k ∗ (t−1)−1.
Therefore, for every family of sparse graphs, having bounded treewidth is
equivalent to having bounded clique-width.

Branchwidth Having bounded branchwidth imposes strong structure on
a graph. As we will see branchwidth imposes a 1/3 -approximation over
treewidth.
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Theorem 7.2.1. (Robertson and Seymour ) Suppose that bw(G) > 1. Then

bw(G) ≤ tw(G) + 1 ≤ [3/2 ∗ bw(G)]

. the proof is thanks to Hliněný, Oum, Seese, and Gottlob [16]

In conclusion we can say that according to the above the most strict pa-
rameters are treewidth and branchwidth. The relationship between them is
not definitive though. The following diagram describes our known relations:

Figure 7.1: The parameters studied in chapter 6

An exactly inverse situation holds over how strong each parameter is.
As seen in chapter 6 each one has been tied with an upper bound . This
situation is reproducing the fact that the more strong a parameter is and
the more aspects of graphs structural properties it bounds the less instances
are expected to correspond to a specific value of it.

7.3 Combining the Results
A summary on results in this sector are presented on the following table.

Each row corresponds to a Logic among with the paired parameter that
classifies is as FPT. Each row consecutively corresponds to two theorems.
In some cases both are known while in others only one is. The expressive
power grows as we continue to lower rows. Each one of those increments
therefore according to theorem 5.1.2 should lead to a stronger parameter
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i.e a parameter that when for an input of size n coresponds to a smaller
percentage of instances of bounded k . The above claim holds for the bounds
that are given i chapter 6 for the parameters appearing here.

FPT Checkable Logic Parameter Proof Converse
FO degree Seese [22] -
MSO1 cliquewidth - Courcelle & Oum [20]
MSO2 treewidth Courcelle [18] Seese [24]
MMSO branchwidth Hliněný [15] -

Table 7.1: A summary of the existing works over this framework.

The percentages of each parameter for input size n and the parameter
bounded by k are given in summary bellow in table NEW. The it is obvi-
ous to notice from those the impact of the inversely proportional between
expression power and parameter power described in section 5.1.
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Chapter 8

Conclusion

8.1 Explaining the results
In full scope now one can use table ?? to utilize meta-knowledge of a

problem to help him choose the correct parameter for solving the problem
efficiently.

For instance while checking a property p one could be absolutely sure
that there exists a parametrized algorithm that runs in FPT time and rec-
ognizes property p. Now the programmer has an extra tool that he can take
advantage of while designing algorithms. Now his resources can be spend in
finding the optimal solution or a fast one instead of searching blindly for an
existing one. An example of such use could be:

Example 8.1.1. For the property of Hamiltonicity: In developing theMS2
formula that expresses the property of Hamiltonicity, we will represent the
set of red edges by the variable R and the set of blue edges by the variable
B.

∃R∃B∀u∀v{part(R,B)∧deg(u,R) = 2 ∧span(u, v,R)∧∀x∀y∃W (con(u, v,W,R)}

where span, deg and part are described in the appendix .1.
The above logic is MSO2 and therefore Hamiltonicity is FPT param-

eterized by treewidth. However the above expression is minimal( there is
no MSO1 equivalent) and therefore Hamiltonicity is at least W[1]-hard pa-
rameterized by cliquewidth - even if no such reductions or algorithms exist
yet.

In addition the results can be used in reverse. An unknown relationship
between logics will have an impact on the relevant running time of each
ones Model-checking. Therefore some short of comparison between them
can arise just by looking at the running times of algorithms that recognize
the properties of each one. This might seem trivial but in the world of formal
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verifications where there is need for a minimal usage of expansions over a
specific logic such results can be utilized massively. For instance by checking
what kind of processes over inputs run in a machine one could derive what
kind of parameter bounds all of them. Consecutively they could request a
machine that is designed to be compatible with the respectable logic.

8.2 Further Research
Besides the obvius expantion of such research that is to analyse more

Logic Classes in a way as done in this thesis there are many other ways this
framework could be expanded.

8.2.1 Fine grained approach
For starters the existing( and further) work in parameters could be ex-

plored in a fine grained manner. We could try checking changes in the com-
plexity of a problem while remaining FPT. What would happen for instance
to a problem when parameterized by many parameters each one stronger
than the last while even the weakest is enough for an FPT time. Through
such search we could learn even more about the nature of parameters and
the limits of computation over bounded universes.

This of course requires a solid framework of parameterized fine grained
reductions that would be able to capture discrimination of complexity inside
the FPT class among with a reduction that would not allow to the changing
of parameters to ”jump” between said discriminations. This is a third way
of regarding the model checking problem, this time by requesting a FPT
running time and toggling the parameterization between known efficient
ones.

8.2.2 Complexity
The reason that this whole work took place over clases defined through

logic is no other that the fact that they are the most proximate to the
tools needed to relate with a computational model. Language-theoretic ap-
proaches to complexity are one of the most popular and effective areas of
computer science. That said this is no reason to study the parameterised
time requirements of classes of problems defined by other means.

Those could be classes appearing in the approximations framework or
the probabilistic one. There is no one forbiding for isntace all efficient ap-
proximable problems to also be FPT parameterized through lets say degree(
this is just an example , it is not true). It is way harder of course to catego-
rize the structural properties of approximable problems but an interesting
point could be made in defense of such a thought ( interesting results in this
direction are those of C. Bazgan [12] , L. Cai [26] and L. Cai, J. Chen [21] )
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Furtherer the results of chapter 6 could be utilized to produce proba-
bilistic schemes for the recognizing the membership in a family of graphs.
Such a thought is exremely young and one can find some interesting works
from M. M̈uller [43].

8.2.3 Logic Metrics
A very interesting work could be done in continuation of chapter 5 re-

garding the way of measuring the expression power of a logic. For the above
work to make valid points it is important to be able to compare such power.
Of course in the strict inclusion case this is not of the same importance but
as seen already from existing work and even more noticeable when consider-
ing extensions that is not always the case . Serious theoretical and applied
work could take place in search for a proper way to express how ”massive”
is a class of properties.
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Appendix

.1 Property Descriptions
The descriptions of conn, span, deg and part are given here :

• part(R, B) : ∀e(e ∈ R ∨ e ∈ B) ∧ ¬(e ∈ R ∧ e ∈ B),

• deg(u, R) = 2 : ∃e1, e2¬(e1 = e2) ∧ inc(e1, u) ∧ inc(e2, u) ∧ e1�R ∧
e2�R∧¬(∃e1, e2, e3,¬(e1 = e3)∧¬(e2 = e3)∧inc(ei, u)∧ei ∈ R for i ∈
1, 2, 3),

• span(u, v, R) : ∃V,Wpart(V,W )∧u ∈ V ∧v ∈W → ∃(e, x, yinc(e, x)∧
inc(e, y) ∧ x ∈ V ∧ y ∈W ∧ e ∈ R,

• conn(x, y, W, R) :∃V 1, V 2 ⊆ V [V 1 ∪ V 2 = V ∧ V 1 ∩ V 2 = ∅ ∧ x ∈
V 1 ∧ y ∈ V 2] → ∃r ∈ R∃p∃qp ∈ V 1 ∧ q ∈ V 2 ∧ inc(r, p) ∧ inc(r, q)

.2 Matroid MSO
Definition of matroid MSO logic: First, we present basic definition con-

cerning monadic second-order logic.

Definition .2.1. We assume two countably infinite set of variables: element
variables and set variables. Element variables are denoted by lower-case
letters, set variables are denoted by upper-case letters. Matroid monadic
second order formulas are defined inductively as follows:

• If x and y are element variables, then x = y is a formula.

• If x is an element variable and X is a set variable, then x ∈ X and
x ∈ cl(X) are formulas.

• If ϕ is a formula, then ¬ϕ is a formula.

• If ϕ and ψ are formulas, then ϕ ∧ ψ is a formula.

• If ϕ is a formula and x is an element variable, then ∃xϕ is a formula.

• If ϕ is a formula and X is an element variable, then �X is a formula.
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