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Abstract

We present a formal definition of distributed monitors that can communicate. This
is done with the purpose of instrumenting them on hypertraces and runtime verifying
properties of Hyper-µHML which would not be monitorable without the communication.

1 Introduction

Runtime verification (RV) is a verification technique that observes system executions to de-
termine whether some given specification [4] is satisfied or violated. This runtime analysis is
usually conducted by a computational entity called a monitor [13].

Recently, this verification technique has been extended to parallel setups [5, 8, 14], a large
part of the work aims to runtime verify hyperproperties [1, 6, 7, 10, 12]. Hyperproperties are
properties, or sets, of hypertraces, i.e. sets of multiple event traces, which encode different
local parts of a system execution, or, alternatively, different system executions. The runtime
counterpart of this is that several traces are observed against a specification instead of one.

To express hyperproperties, multiple extensions of temporal logics have been defined, inter-
preted on hypertraces, such as hyper-LTL [9] and a restricted fragment of a variation of the
µ-calculus [1]. For instance, in hyperlogics one can express properties such as “If there exists
a trace where event ‘a’ occurs, then there exists another trace where no longer a ‘b’ occurs”,
thereby describing dependencies over different traces. It has become of pivotal importance to
define logics that express such properties, and provide the corresponding monitors for checking
whether an observed hypertrace is in the semantics of a hyperproperty.

In this work we use the logic Hyper-µHML [1, 3] as a specification logic, and we build
the foundation for a monitor synthesis procedure for a monitorable fragment [2]. As shown
in [1], in order to synthesize monitors for a useful fragment of the logic, it is necessary to
extend the monitor capabilities with communication. This is necessary to provide monitors
for properties such as the one in the example given above. With this abstract we describe
exactly our formalization of this extended communicating monitor setup, which in previous
works was only captured informally as protocol descriptions. In this talk we revisit the syntax
of Hyper-µHML and discuss part of its semantics over hypertraces to demonstrate our intended
monitoring setup. Then we introduce the syntax of communicating monitors, and briefly discuss
their semantics. Lastly, we describe the current state of our research and what goals we have
in the near and slightly further future.

2 Specification Logic

We define the set of traces Trc = Actω, where Act is a finite set of actions. To define the
syntax of our communicating monitors (see Section 3), we need to fix the ID’s of the monitors

mailto:antonios@ru.is
mailto:elli.anastasiadi@it.uu.se
mailto:adrian.francalanza@um.edu.mt
mailto:janaw@ru.is


Communicating Monitors for Hyper-µHML Achilleos, Anastasiadi, Francalanza, Wagemaker

that are communicating. We chose to let this depend on the number of traces that are in the
hypertrace we wish to monitor, and as such we study hypertraces of a fixed size. We take index
set I = {1, . . . , k} and define hypertraces of a fixed size k as functions from I to Trc. We call
the elements of I locations; each location gets assigned a trace.

We consider Hyper-µHML as the logic to specify hyperproperties. The only difference with
[1] is the equality and inequality we can express between two traces, which is now supported
though our monitor syntax, and thus we chose to include it for the specifications as well. We
assume two disjoint, countably infinite sets Π and V of trace variables and recursion variables
respectively, and let π, π′ . . . ∈ Π and x, y, . . . ∈ V . Formulae φ ∈ Hyper-µHML are constructed
as follows:

φ,φ′ ::= ∃π.φ | ∀π.φ | φ ∧ φ | φ ∨ φ | ψ | π = π′ | π ̸= π′

ψ ::= tt | ff | [aπ].ψ | ⟨aπ⟩.ψ | ψ ∧ ψ | ψ ∨ ψ | maxx.ψ | minx.ψ | x,

The semantics is defined over finite sets of sets of traces of size k. We have HTrcI = {T |
T : I 7→ Trc}. We require a function ρ : V 7→ 2HTrcI assigning sets of hypertraces of size k to
recursion variables and an assigment σ : Π 7→ I assigning a location to trace variables. As each
hypertrace is a function assigning traces to locations, σ together with the hypertrace gives us a
trace in the specific hypertrace for a trace variable: T ◦ σ(π) = T (i) = t for some π ∈ Π, i ∈ I,
t ∈ Trc. In this paper we do not present the full semantics, but instead just highlight a few
interesting cases.

For two of those cases we need notation for a hypertrace taking a step, i.e. of each trace
in the hypertrace we keep only the tail: for a trace at in a hypertrace for some t ∈ Trc and
a ∈ Act what remains after a step of the hypertrace is just t. For t, t′ ∈ Trc we can write t

a−→ t′

if t = at′. We use A to refer to functions from I to Act. For hypertraces T, T ′, we further define

T
A−→ T ′ if and only if for every i ∈ I, T (i)

A(i)−−−→ T ′(i).
Now we present the semantics of boxes, diamonds, the existential and the universal quanti-

fier. The semantics of the box expresses that for all hypertraces T that assign to trace variable
π a trace that starts with an a, the hypertrace T ′ that is a result of T after taking a step (where
the trace of π takes an a-step), must satisfy ψ. The reasoning for the diamond is dual. For
the existential quantifier we take the union over all possible location assignments of π. For the
universal quantifier we take the intersection instead of the union.

J[aπ].ψ, ρ, σK = {T ∈ HTrcI | ∀A∀T ′((A(σ(π)) = a ∧ T A−→ T ′) implies T ′ ∈ Jψ, ρ, σK)}

J⟨aπ⟩.ψ, ρ, σK = {T ∈ HTrcI | ∃A∃T ′(A(σ(π)) = a ∧ T A−→ T ′ ∧ T ′ ∈ Jψ, ρ, σK)}

J∃π.φ, ρ, σK =
⋃
i∈I

Jφ, ρ, σ[π 7→ i]K J∀π.φ, ρ, σK =
⋂
i∈I

Jφ, ρ, σ[π 7→ i]K

3 Monitors

We fix a set of monitor names name(M) = {1, . . . , l} with l ≥ k. We fix a surjective function
f : name(M) 7→ I. We define a communication alphabet Com ::= (!G, c), | (?G, c) , G ⊆
name(M) over some finite alphabet Con with c ∈ Con, of communication constants. We have
a communication letter for sending to a group (multicast), and for receiving from a group.
Group receive should be understood as: a monitor receives a message from some subset of
monitors, but it does not matter which one. This can be relevant if we have multiple monitors
monitoring the same trace in a hypertrace. Communication between individual monitors can
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be represented by taking singleton sets for G. The syntax of communicating monitors is:

CMon ∋M,N ::=M ∨N |M ∧N | [m]i

Mon ∋ m,n ::= yes | no | end | a.m | c.m | m+ n | rec x.m ,

with c ∈ Con, a ∈ Act, m ∈ Mon and i ∈ name(M). We require that for our communicating
monitors, each name appears at most once. With [m]i we denote that the monitor with name
i in M is in state m. In the talk we will present part of the formalisation of the semantics in
terms of transition rules. Here we just give some of the intuition. A communicating monitoring
set-up (an element of CMon) is similar to the set-up presented in [1], where a group of monitors
is seen as a circuit composed of a hierarchy of gates. Each trace t ∈ T is assigned a fixed set of
monitors in Mon that correspond to the local properties to be verified and are at the bottom
layer of the structure. Monitors assigned to the same trace run in parallel and observe identical
events. Contrary to [1], monitors assigned to different traces are no longer completely isolated
from each other, but can now communicate. Verdict combination is still the same as in the
circuit model [1] and is synchronous. We give here an example that demonstrates all concepts
presented here working together. Let Act = {a, b}, I = {i, j} and name(M) = {1, 2}. We
monitor the formula

∃π∃π′(min x.(⟨aπ⟩.min y.(⟨bπ′⟩.tt ∨ ⟨aπ′⟩.y) ∨ ⟨bπ⟩.x)) .

This formula states that some trace exhibits an event “a” and later a trace sees a “b”. The
communicating monitor set-up for this formula is as follows:

M ::= [rec x.(a.rec y.(a.(?{2}, b).yes+ b.yes+ a.y) + b.(!{2}, b).x)]1
∨ [rec x.(a.rec y.(a.(?{1}, b).yes+ b.yes+ a.y) + b.(!{1}, b).x)]2 .

M should be such that M on input hypertrace T of size 2 outputs yes only if T has a trace
that sees an a and a trace that later sees a b.

4 Future Work

The next step is to determine fragments of the logic for which we can have a synthesis function
s such that s(φ) is a sound and/or violation-complete monitor for φ (see definitions in [1]). This
entails that for any hypertrace T , if T ∈ JφK then s(φ) will reject T (violation-completeness), and
when s(φ) reaches verdict yes (no) on input T , T ∈ JφK (T /∈ JφK, respectively). Such a synthesis
of course might not provide us with optimal, or even efficient, monitors. Indeed, as discussed in
[3], two or more circuit monitors can be violation- (or satisfaction- etc) complete for the same
specification and one of them might require an unrealistic amount of communication to take
place at runtime. We would like thus to establish a methodology for proving that an arbitrary
monitoring setup is indeed monitoring of a given property so that we can compare between
different monitoring setups without jeopardizing the correctness or the monitors themselves
and ultimately use this for guaranteeing the optimality of our synthesis.

Such an attempt requires a framework for describing the accumulation of knowledge between
different agents (monitors), and thus, as discussed in [3] we aim to utilize dynamic epistemic
logic [11] to describe this event driven accumulation of knowledge in our monitors.

Once that is in place, an important next step is to study the extension of our specification
logic to allow quantifiers inside the scope of fixpoints. This will allow us to express properties
such as “at every step, at least one trace has an a”, which could be written as max x.∃π.(⟨aπ⟩x).
This is a formula for which our monitor setup is able to detect violations, but that is currently
not in the syntax of the specification logic.
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