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Abstract. This paper investigates monitorability in the context of prob-
abilistic systems. We specify how monitor verdicts, reached over finite
(partial) traces can be given a probabilistic interpretation. For monitors
that are used to verify properties at runtime, we also relate their prob-
abilistic verdicts to the probability that the corresponding completed
trace satisfies the property of interest. This leads us to define proba-
bilistic monitor soundness and completeness, which are then used to
formulate probabilistic monitorability. Surprisingly, we show that the re-
sulting notions coincide with classical monitorability from the literature.
This allows us to transfer prior results from the classical setting to the
probabilistic realm.

1 Introduction

Some of Thomas A. Henzinger’s recent work has given seminal contributions to
the field of runtime monitoring—see, for instance, the papers [13,15,16,22,23].
Moreover, in light of the new Advanced Grant he received from the European
Research Council in April 2021 for the project ‘Vigilant Algorithmic Monitoring
Of Software (VAMOS)’, we expect that, in the coming years, Thomas A. Hen-
zinger and his group at IST Austria will contribute substantial new developments
to both the theoretical foundations and the practice of runtime monitoring for
modern software-based systems that rely on artificial intelligence and cloud com-
puting, amongst other paradigms, and interact with an uncertain cyber-physical
environment. To our mind, Thomas A. Henzinger cogently articulated the vi-
sion for the VAMOS project, and indeed for the field of runtime monitoring as a
whole, in his keynote address at the 2020 edition of the conference on Runtime
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Verification. The key idea is to ensure that the runtime behaviour of critical
software components be always observed and vetted online by other software
devices, the so-called monitors, in order to identify possible misbehaviours at
execution time in a timely fashion. Ideally, the monitors used for that purpose
should be developed independently of the systems whose behaviour they ob-
serve and be synthesised automatically from system specifications. According
to an IST Austria press release5, the aim of the project VAMOS is to increase
the robustness, dependability and trustworthiness of critical software systems
by harnessing ‘the increasing availability of hardware resources, from multicore
processors to data centers.’

As we trust the above prefatory text makes clear, monitors are key com-
ponents in runtime monitoring. They are passive computational entities that
observe the execution of a system, i.e., a finite trace of events, to determine
properties about it [7,17,18]. When monitoring the behaviour of systems in-
volving randomised choices, such as communication protocols and randomised
algorithms, the observed systems are naturally equipped with probabilistic in-
formation about their branching behaviour and, due to their passivity, monitors
intrinsically inherit this probabilistic behaviour. It is then natural, and fairly
straightforward to ascribe this probabilistic measurement to monitor verdicts.
However, when relating monitors to (linear-time) specifications, it is unclear
whether the resulting probabilistic verdicts, reached by the monitor over finite
trace observations, are still in accordance with the probability that the com-
pleted trace (which may be infinite) satisfies the specification being monitored
at runtime. This constitutes a monitorability problem that, to wit, has not been
studied in the literature.

This paper investigates monitorability for probabilistic systems. Our result
are modelled on the monitorability definition given in [2,18] which, opportunely,
teases apart the monitor behaviour from the semantics of the properties being
monitored, and relates them in terms of standard soundness and completeness
criteria; it has also been formally related to other variants in the literature [3]
and used for branching-time settings [1,19]. Our contributions in this celebratory
article are as follows:

1. We define probabilistic versions of monitor soundness and completeness re-
lating the probability of reaching each verdict after a finite prefix to the
probability that a complete trace extending it satisfies the property, Defini-
tions 8 and 9.

2. We show a surprising correspondence between probabilistic monitorability
and its classical variant, Theorem 1, which allows us to inherit prior results
such as syntactic characterisations of monitorable properties.

3. We show how this framework is general enough to be adapted to probabilistic
settings that consider a margin of error, Definition 11 and Theorem 2.

4. Section 4 concludes our contribution with an application of these results
to estimate probabilities in settings that allow for repeated monitored runs
while still treating the observed system as a black box.

5 See‘https://ist.ac.at/en/news/erc-grants-beacon-of-scientific-success/.

https://ist.ac.at/en/news/erc-grants-beacon-of-scientific-success/
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We end this article with some concluding remarks, a discussion of related liter-
ature and some avenues for future research (Section 5).

2 Preliminaries

We introduce the core concepts of measure and probability theory needed in this
study. We refer the interested reader to [4,6,8] for a more in-depth presentation.

Definition 1 (σ-algebra [6, p. 754]). For a set X, a σ-algebra on X is a set
Σ ⊆ 2X such that

– X ∈ Σ,
– if A ∈ Σ then X \A ∈ Σ (closure under complement), and
– if A1, A2, . . . ∈ Σ then

⋃
n≥1An ∈ Σ (closure under countable unions).

A pair (X,Σ) of a set X together with a σ-algebra Σ on X is known as a
measurable space. If Σ is a σ-algebra and A ∈ Σ, we say that A is measurable
for Σ, and if Σ is evident from the context, we simply say that A is measurable.
With a σ-algebra on X at hand, we can define a probability measure on X.

Definition 2 (Probability measure [6, p. 754]). Given a measurable space
(X,Σ), a probability measure is a function P : Σ → [0, 1] such that P(X) = 1
and P(

⋃
i∈I Ai) =

∑
i∈I P(Ai) for any countable, pairwise disjoint collection

{Ai}i∈I ⊆ Σ. We denote by D(X) the set of all probability measures on X.

Hence a probability measure assigns a probability to any measurable set in
such a way that, for example, P(A ∪B) = P(A) + P(B), if A and B are disjoint
sets, as well as ensuring that P(∅) = 0 and P(A) = 1− P(A), for each A.

A probabilistic system is one in which the evolution of the system is governed
by some probability distribution. We use here one of the simplest probabilistic
systems, namely (generative) Markov chains. Assume a finite set of actions Act.

Definition 3 (Markov chain). A Markov chain is a tuple M = (S, s∗, ∆),
where S is a countable set of states, s∗ ∈ S is the start state, and ∆ : S →
D(Act× S) is the transition function assigning to each state a distribution over
actions and states.

A Markov chain M = (S, s∗, ∆) currently in state s ∈ S evolves by choosing
action a and state s′ with probability ∆(s)(a, s′), moving to s′ while outputting
the action a. In this paper we consider the trace-based behaviour of Markov
chains. A trace is an infinite sequence of actions a1a2 · · · ∈ Actω. We let π, π′

range over traces. A finite trace is a sequence of actions a1a2 . . . an ∈ Act∗ which
we range over by w,w′, and sets of finite traces are ranged over by F . We denote
the empty trace by ε. Given two finite traces w and w′, we write w � w′ if w is
a prefix of w′, meaning that there exists a finite trace w′′ such that ww′′ = w′.
For a trace π = a1a2 . . . , we let π〈i〉 = ai, π|i = a1 . . . ai and π|i = ai+1, . . . .
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For a Markov chain M = (S, s∗, ∆) we obtain a measurable space of traces
(Actω, Σ) using the cylinder construction (see e.g. [6, pp. 757–758]) as follows.
Given a finite trace a1 . . . an, we define the cylinder of that trace as

C(a1 . . . an) = {π ∈ Actω | π|n = a1 . . . an}.

Thus C(a1 . . . an) is the set of infinite traces that all agree on the finite prefix
a1 . . . an. In the following, we fix the σ-algebra Σ on Actω, defined as the smallest
σ-algebra containing all cylinders. For a given state s, we define a probability
measure PsM on the measurable space (Actω, Σ) inductively as PsM (C(ε)) = 1
and

PsM (C(a1a2 . . . an)) =
∑
s′∈S

∆(s, a1)(s′) · Ps
′

M (C(a2 . . . an)).

Although we only define PsM on cylinders, the probability extends uniquely to
the whole σ-algebra Σ using the Hahn-Kolmogorov theorem [29, Theorem 1.7.8].
Thus for any measurable set A ∈ Σ, the probability PsM (A) is well-defined.

3 Monitoring

Runtime verification employs monitors to observe the behaviour of the system,
typically as a black box; the system emits sequences of events/actions from some
set Act. A monitor accepts if the (finite) observations lead it to conclude that the
system satisfies a property of interest, and rejects if it observes enough events
to conclude that the property is violated. Our objective is to give an account
of monitoring in the case where the system being monitored is a probabilistic
system. In this case, the monitor itself is still non-probabilistic, and can only
observe the actions emitted by the probabilistic system. Thus the monitored
system is still a black box, and the monitor has no way of knowing the internal
state or the transition probabilities of the system.

Definition 4 (Monitor). A monitor m = (Facc, Frej) is a pair of sets of finite
traces Facc, Frej ⊆ Act∗ satisfying: (i) Facc ∩ Frej = ∅; (ii) for i ∈ {acc, rej}:

if w ∈ Fi then for any w′ ∈ Act∗ where w ≤ w′ we also have w′ ∈ Fi (1)

The traces in Facc denote the finite observations accepted by the monitor
whereas those in Frej are the traces the monitor rejects. Condition (1) ensures
that verdicts (i.e., acceptances and rejections) are irrevocable. For a set F ⊆ Act∗
we define C(F ) =

⋃
w∈F C(w), so that C(F ) is the union of the cylinders gener-

ated by each string in F . Since each cylinder C(w) is measurable by definition,
C(F ) is also measurable, being a countable union of measurable sets.

Example 1. Assume that Act = {a, b, c}. Consider a monitor whose accepting
set is

Facc = {π ∈ Act∗ | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)},
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s1

s2 s3

a, 0.2 c, 0.6

a, 0.2b, 0.3

b, 0.2
a, 0.5

c, 0.7

a, 0.3

Fig. 1. A Markov chain with three states, the initial state being s1. The symbol and
number above each transition indicates which action is taken and with what probability.

and let M = (S, s1, ∆) be the Markov chain describing the system depicted in
Figure 1. In order to calculate the probability of the monitor accepting when
monitoring this system, we first note that C(Facc) = C(aa) ∪ C(c). Since these
are disjoint sets, we can calculate the probability as

Ps1
M (C(Facc)) = Ps1

M (C(aa)) + Ps1
M (C(c)) = (0.2 · Ps2

M (C(a)) + 0.2 · Ps3
M (C(a))) + 0.6

= (0.2 · 0.5 + 0.2 · 0.3) + 0.6 = 0.76.

Properties of systems will be described in the linear-time µ-calculus [2,31].

ϕ,ψ ::= tt | ff | X | ϕ ∧ ψ | ϕ ∨ ψ | [a]ϕ | 〈a〉ϕ | µX.ϕ | νX.ϕ

Formulas are interpreted over infinite traces using an interpretation ρ : S →
2Act

ω

for variables. The semantics is standard; we present here the cases dealing
with the modal and the fixed-point operators.

J[a]ϕKρ = {π ∈ Actω | π|1 ∈ JϕKρ whenever π〈1〉 = a}
J〈a〉ϕKρ = {π ∈ Actω | π〈1〉 = a and π|1 ∈ JϕKρ}

JµX.ϕKρ =
⋂
{S ⊆ Actω | JϕKρ[X 7→S] ⊆ S}

JνX.ϕKρ =
⋃
{S ⊆ Actω | JϕKρ[X 7→S] ⊇ S}

For closed formulas, we may omit the subscript and simply write JϕK. Since
the logic is semantically closed under complement, we define negation as com-
plement, meaning that J¬ϕK = Actω \ JϕK. We next prove that each formula
denotes a measurable property over infinite traces.

Lemma 1. For each ϕ, JϕK is measurable.

Proof. Since the linear-time µ-calculus and Büchi automata are equivalent [12],
[30, Proposition 2.3], which states that the set of traces recognisable by a given
Büchi automaton is measurable, shows that JϕK is measurable. ut

Lemma 1 means that the probability PsM (JϕK) of a property is well-defined.
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Example 2. The property ϕ = [a]〈a〉tt ∧ [b]ff states that a trace cannot start
with b, and whenever it starts with a, it must be followed by another a. Assume
that Act = {a, b, c}. The probability that M = (S, s1, ∆), from Figure 1, does
not satisfy ϕ is

Ps1
M (J¬ϕK) = Ps1

M (C(b) ∪ C(ab) ∪ C(ac))

= Ps1
M (C(b)) + Ps1

M (C(ab)) + Ps1
M (C(ac))

= 0 + (0.2 · Ps2
M (C(b)) + 0.2 · Ps3

M (C(b))) + (0.2 · Ps2
M (C(c)) + 0.2 · Ps3

M (C(c)))

= 0 + (0.2 · 0.5 + 0.2 · 0) + (0.2 · 0 + 0.2 · 0.7) = 0.24.

It follows that Ps1M (JϕK) = 0.76, which is the ‘acceptance probability’ of a mon-
itor of the type we considered in Example 1. In the subsequent section, we will
explore the precise connections between monitors and properties in the setting
we study in this paper.

3.1 Soundness, completeness, and monitorability

In the non-probabilistic setting [2], a monitor is sound with respect to some
property of interest if any trace accepted by the monitor also satisfies the prop-
erty, and any trace rejected by the monitor does not satisfy the property. In
other words, soundness means that the monitor is an underapproximation of the
property.

Definition 5 (Soundness). A monitor m = (Facc, Frej) is sound for a for-
mula ϕ if C(Facc) ⊆ JϕK and C(Frej) ⊆ J¬ϕK.

Dually, completeness requires the monitor to overapproximate the property
being monitored: if a trace satisfies the property, the monitor must accept that
trace, and if a trace violates the property, the monitor should reject the trace.

Definition 6 (Completeness). A monitor m = (Facc, Frej) is complete for
a formula ϕ if JϕK ⊆ C(Facc) and J¬ϕK ⊆ C(Frej).

Together, Definitions 5 and 6 require a monitor to fully agree with the prop-
erty being monitored, i.e. C(Facc) = JϕK and C(Frej) = J¬ϕK. A property is said
to be monitorable if there exists a monitor which fully agrees with it.

Definition 7 (Monitorability). A formula ϕ is monitorable if there exists a
monitor that is sound and complete for ϕ.

In the probabilistic setting, we do not change either the monitors or the
properties, but we interpret them over probabilistic systems. Hence, whereas
non-probabilistic soundness and completeness range over satisfaction of the prop-
erty in all models, the probabilistic version will range over the probability of the
property in all probabilistic models. In order to extend the notions of soundness
and completeness to the probabilistic setting, we impose two criteria: (1) the
extension should be conservative, so that if m is sound and complete for ϕ, it is
also probabilistically sound and complete for ϕ; (2) the extension should preserve
the idea of soundness being an underapproximation and completeness being an
overapproximation, but in a probabilistic setting.
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Definition 8 (Probabilistic soundness). A monitor m = (Facc, Frej) is
probabilistically sound for ϕ if Ps∗M (C(Facc)) ≤ Ps∗M (JϕK) and Ps∗M (C(Frej)) ≤
Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).

Definition 8 fulfills criterion (1), since the monotonicity property of proba-
bility measures, which states that if A ⊆ B, then P(A) ≤ P(B), gives us that
if C(Facc) ⊆ JϕK, then Ps∗M (C(Facc)) ≤ Ps∗M (JϕK), and likewise for rejection. It
also fulfills criterion (2), since probabilistic soundness ensures that the probabil-
ity of the monitor accepting is an underapproximation of the probability of the
property being satisfied, and likewise for rejection.

Example 3. Assume Act = {a, b, c}. Recall the formula ϕ = [a]〈a〉tt ∧ [b]ff we
considered in Example 2. Let

Facc = {π ∈ Act∗ | (π〈1〉 = a = π〈2〉)} or (π〈1〉 = c)} and

Frej = ∅.

For any M = (S, s∗, ∆), Examples 1–2 tell us that

Ps∗M (C(Facc)) = Ps∗M ({π ∈ Actω | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)}) = P(JϕK).

Moreover, 0 = Ps∗M (∅) = Ps∗M (Frej) ≤ Ps∗M (J¬ϕK), so m = (Facc, Frej) is sound for
ϕ.

Definition 9 (Probabilistic completeness). A monitor m = (Facc, Frej)
is probabilistically complete for a formula ϕ if Ps∗M (C(Facc)) ≥ Ps∗M (JϕK) and
Ps∗M (C(Frej)) ≥ Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).

This definition also fulfills both of the stated criteria. Criterion (1) is satisfied
for the same reason as for probabilistic soundness, and criterion (2) is satisfied
because the probability that the monitor accepts is an overapproximation of the
probability that the property is satisfied, and likewise for rejection.

Example 4. Recall Act = {a, b, c} and ϕ from Example 3 with

Facc = {π ∈ Act∗ | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)}, and

Frej = {π ∈ Act∗ | (π〈1〉 = b) or (π〈1〉 = a and (π〈2〉 = b or π〈2〉 = c))}.

Then, for any system described by a Markov chain M = (S, s∗, ∆), we get

Ps∗
M (C(Facc)) = P({π ∈ Actω | (π〈1〉 = a = π〈2〉) or (π〈1〉 = c)}) = Ps∗

M (JϕK), and

Ps∗
M (C(Frej)) = Ps∗

M ({π ∈ Actω | (π〈1〉 = b) or (π〈1〉 = a and (π〈2〉 = b or π〈2〉 = c))})
= Ps∗

M ({π ∈ Actω | (π〈1〉 6= a or π〈2〉 6= a) and (π〈1〉 6= c)}) = Ps∗
M (J¬ϕK),

so the monitor m = (Facc, Frej) is both probabilistically sound and complete
for ϕ.

Soundness and completeness together would then imply Ps∗M (C(Facc)) =
Ps∗M (JϕK) and Ps∗M (C(Frej)) = Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).
This describes the probabilistic monitorability of a formula.
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Definition 10 (Probabilistic monitorability). A formula ϕ is probabilisti-
cally monitorable if there exists a monitor m that is probabilistically sound and
probabilistically complete for ϕ.

It is interesting to consider the connections between the probabilistic and
non-probabilistic version of soundness and completeness. Because probabilistic
soundness and completeness are conservative extensions of their non-probabilistic
counterparts, if m monitors soundly for ϕ in the non-probabilistic setting, then
m should also monitor soundly for ϕ in the probabilistic setting. Likewise for
completeness. Surprisingly, it turns out that the reverse implication also holds.

Theorem 1. Monitor m is sound for ϕ if and only if m is probabilistically
sound for ϕ. Moreover, m is complete for ϕ if and only if m is probabilistically
complete for ϕ.

Proof. Soundness and completeness imply their probabilistic counterparts by
monotonicity of probability measures. For the other direction, we prove the con-
trapositive, so assume that m is not sound for ϕ. Assume, without loss of gen-
erality, that C(macc) 6⊆ JϕK. This means that there exists a trace π ∈ C(macc)
such that π /∈ JϕK. It is now immediate to exhibit a Markov chain M such that
Ps∗M (C(macc)) = 1 but Ps∗M (JϕK) = 0 by constructing M such that it generates
only the trace π. Then 1 = Ps∗M (C(macc)) 6≤ Ps∗M (JϕK) = 0, so m is not probabilis-
tically sound for ϕ. A similar argument works for the case of completeness. ut

A corollary of Theorem 1 is that the probabilistically monitorable formu-
las are exactly those that are also non-probabilistically monitorable. In [2] it
was shown that the largest fragment of the linear-time µ-calculus for which all
formulas are monitorable is the Hennessy-Milner logic [21].

Corollary 1. The fragment consisting of the formulas generated by the following
grammar

ϕ,ψ ::= tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | [a]ϕ | 〈a〉ϕ
is probabilistically monitorable and maximally expressive.

AI: Wouldn’t it be appropriate to add the material characterising
violation- and satisfaction completeness?

3.2 Other Monitor Requirements

Theorem 1 may seem to imply that Definitions 8 and 9 are very restrictive.
However, the theorem holds for other, more relaxed interpretations of soundness
and completeness in a probabilistic setting. Fix two parameters c, d > 0.

Definition 11 (Probabilistic soundness and completeness with a mar-
gin of error). A monitor m = (Facc, Frej) is probabilistically sound for ϕ with
margin of error c if Ps∗M (C(Facc)) ≤ c ·Ps∗M (JϕK) and Ps∗M (C(Frej)) ≤ c ·Ps∗M (J¬ϕK)
for all Markov chains M = (S, s∗, ∆). Likewise, m is probabilistically complete
with margin of error d for ϕ if Ps∗M (C(Facc)) ≥ d · Ps∗M (JϕK) and Ps∗M (C(Frej)) ≥
d · Ps∗M (J¬ϕK) for all Markov chains M = (S, s∗, ∆).
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The two parameters, when c > 1 and d < 1, allow the monitor to occasionally
give more or fewer verdicts than it should, but always within a set margin of error.
Another candidate for soundness and satisfaction-completeness, parameterized
with respect to c and d, is conditional soundness and completeness.

Definition 12 (Conditional soundness and completeness). A monitor
m = (Facc, Frej) is conditionally sound for ϕ with margin of error c > 0 if it
holds that Ps∗M (JϕK | C(Facc)) ≥ c and Ps∗M (J¬ϕK | C(Frej)) ≤ c for all Markov
chains M = (S, s∗, ∆). A monitor (Facc, Frej) is conditionally complete for ϕ
with margin of error d > 0 if Ps∗M (C(Facc) | JϕK) ≥ d and Ps∗M (C(Frej) | J¬ϕK) ≥ d
for all Markov chains M = (S, s∗, ∆).

We observe that for these variations of probabilistic soundness and complete-
ness as well, the arguments used in the proof of Theorem 1 can also be applied.

Theorem 2. All the variants of soundness and completeness are equivalent.
This means that Definitions 5, 8, 11, and 12 are equivalent, and that Definitions
6, 9, 11, and 12 are also equivalent.

Proof. The first two items, both for soundness and completeness are equivalent,
by Theorem 1. To show that each other item is equivalent to the first, we follow
the proof of Theorem 1. ut

Theorem 2 allows us to treat monitorability uniformly for all the approaches
described by Definitions 5, 6, 8, 9 and 11 to 12. For instance, the monitor synthe-
sis defined in [19,2] and implemented in [5] applies directly to the probabilistic
setting (with margins of error). We also remark that the approach of [2] al-
lows for more fine-grained notions of completeness in terms of satisfaction- and
violation-completeness, which leads to more properties being monitorable [3].
Our results straightforwardly extend to these notions.

4 An Application: Estimating Probabilities

M m
w

accept

reject

Fig. 2. A setup for estimating probabilities. M is a probabilistic system being moni-
tored by the monitor m, which reads the trace w emitted by S to provide a verdict.

The theory we have described in Section 3 allows us to estimate the proba-
bilities of properties over infinite traces, even if the system itself is a black box.
To see this, consider the setup depicted in Figure 2. Here we have a probabilistic
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system M = (S, s∗, ∆), of which we do not know the internal workings, and
hence should be viewed as a black box. Using the monitor synthesis from [2], we
can generate a monitor m = (Facc, Frej) which is both sound and complete for a
monitorable property ϕ, whose probability in M we are interested in estimating.
As m observes the behaviour of M given by a sequence of outputs w = a1 . . . an,
m will eventually, in finite time, produce either an accept or a reject verdict.
This is guaranteed because m is both sound and complete.

In a setting where a system is executed repeatedly (e.g., once every morning),
we can estimate the probability Ps∗M (JϕK). Concretely, every time the system M
is run (with passive monitor m), the verdict reached for an exhibited trace is
recorded (here we assume that we can reset the system to its initial state, as is
done in, for instance, [14]). After some number of iterations, say n iterations,
we will have observed some number nacc of accept verdicts and some number
nrej of reject verdicts. We can then estimate the probabilities Ps∗M (C(Facc)) and
Ps∗M (C(Frej)) by nacc

n and
nrej

n , respectively. By Theorem 1, the probability of
satisfying the property is equal to the probability of the monitor accepting, and
likewise for not satisfying the property and rejecting. This means that nacc

n and
nrej

n are also estimates of Ps∗M (JϕK) and Ps∗M (J¬ϕK), respectively, so we can use
these to estimate the probability that ϕ is satisfied in M .

This approach to estimating only works for the monitorable fragment of the
logic (see Corollary 1). However, even for non-monitorable properties, we can use
the approach to give estimates of the probability in terms of lower and upper
bounds. For some non-monitorable property ϕ, one could construct a sound
monitor m1 = (F 1

acc, F
1
rej) and a complete monitor m2 = (F 2

acc, F
2
rej). (AI:

Should we refer to Kupferman and Vardi’s bad and good prefixes here,
and to the CSL 2021 paper?) Then Ps∗M (C(F 1

acc)) ≤ Ps∗M (JϕK) ≤ Ps∗M (C(F 2
acc)),

and similarly for J¬ϕK and the rejection parts of the monitors. Hence m1 gives a
lower bound on the probability of ϕ, and m2 gives an upper bound. Now we can
use the approach from before to estimate the probabilities of m1 accepting and
rejecting and of m2 accepting and rejecting, thus giving us estimates on lower
and upper bounds on ϕ. The downside is that in this case we have no guarantee
that m1 will give a verdict in finite time.

5 Conclusions

There will be some concluding remarks, a discussion of related literature and
some avenues for future research. Luca: To be written. We should mention
at least these papers [10,14,20,24,27,28].

Related work Runtime monitoring for probabilistic systems has been an ac-
tive research area for some time and is currently the subject of considerable
activity—see, for instance, the papers [10,14,20,24,27,28] to name but a few. To
our mind, the work that is closest to our study is the one presented by Sistla and
Srinivas in [27]. In that article, the authors investigate runtime monitoring of
qualitative properties for systems modelled as Hidden Markov Chains, namely
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Markov chains that have outputs associated with their states. (The labelled
Markov chains we consider can be viewed as an action-based counterpart of Hid-
den Markov Chains.) In the above-mentioned paper, Sistla and Srinivas study
both deterministic and probabilistic monitors. They give deterministic monitors
that use counters to monitor properties that can be expressed as deterministic
Büchi automata with a desired accuracy. However, the monitoring algorithm
needs to know the Hidden Markov Chain defining the system and is therefore
not black box. This deficiency is remedied in op. cit. by means of probabilistic
monitors. A probabilistic monitor for a property is a randomised algorithm that
rejects with probability one every system computation that does not satisfy the
property. On the other hand, a strong probabilistic monitor for a property is a
probabilistic monitor that accepts every system computation that satisfies the
property with some positive probability. Sistla and Srinivas prove an expres-
sive completeness result for strong probabilistic monitors that characterises the
class of properties that have such monitors, namely the class of properties that
can be recognised by (infinite-state) Büchi automata. The above-mentioned pa-
per also gives some techniques that can be used to combine deterministic and
probabilistic approaches to monitoring Hidden Markov Chains.

Junges et al. study runtime monitors for systems modelled as Markov De-
cision Processes in [24]. These are systems that are partially observable and,
unlike (Hidden) Markov Chains, exhibit both nondeterministic and probabilis-
tic dynamics. The observation function for Markov Decision Processes, which
describes the observations that can be made at each system state, is also proba-
bilistic. Moreover, each system state has an associated non-negative real number
that describes how risky that state is. In the above-mentioned paper, Junges
et al. study the following monitoring problem:

Decide whether, for any possible scheduler used to resolve the nondeter-
minism in the observed system, the ‘weighted trace risk’ of a given trace
of observations is larger than some given threshold.

Two algorithms are given for solving the above problem and are evaluated on
a range of benchmark applications. One is based on using forward filtering and
employs vertices of a convex hull to represent a possibly exponential set of dis-
tributions. The other is based on model checking and runs in polynomial time.
Both algorithms, however, require knowledge of the observed Markov Decision
Process and therefore do not treat the system as a black box.

The runtime monitoring problem studied in [24] is conceptually related to
the predictive monitoring problem for hybrid systems [11], namely the problem
of predicting, at runtime, whether the system can reach some unsafe state in
the future within a given time bound. Unlike other approaches to runtime veri-
fication, predictive monitor aims at detecting potentially bad system executions
before a violation occurs. In [26], Phan et al. have proposed a method they call
Neural State Classification to train deep neural networks to classify observed ex-
ecutions of hybrid systems as unsafe if they can be extended to reach an unsafe
state. Bortolussi et al. build on that work in [9] to develop a framework called
Neural Predictive Monitoring that provides efficiency, accuracy, and statistical
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guarantees on the prediction error, which were not provided by the methods
from [26]. It would be very interesting to apply some of the methods in those
two papers to the setting described in Section 4.

Esparza et al. study the enforcement of ω-regular properties over labelled
Markov chains by means of universal restarting strategies in [14]. The key re-
quirement on the restarting strategy is that, for each Markov chain, the number
of restarts is finite and the execution of the Markov chain after the last restart
satisfies the desired property, with probability 1. Two algorithms are given for
this task, a cautious and a more efficient bold one, and are evaluated experi-
mentally using models from the PRISM Benchmark Suite [25]. In the work by
Esparza et al., both the Markov chain and its set of states are unknown to the
algorithms. However, the authors assume that the algorithms can detect whether
the current state has been observed previously, but cannot pinpoint which state
of the observed chain it is.

In [10], Bartolo et al. investigate monitoring for probabilistic, automata-based
specifications expressed as (binary) session types where choice points are aug-
mented with a probability distribution. Their monitors employ statistical infer-
ence techniques to detect (partial) executions that deviate considerably from
the prescribed probabilities as they pass repeatedly through these choice points.
Since detections in this work are interpreted with respect to a pre-specified con-
fidence level, it is worth investigating whether Definition 12 can be used to assess
the soundness and completeness of the approach; the margin of error c might be
used to accommodate errors induced by said confidence level.

AI: To be continued.

Future work The work presented in this paper paves the way to several interest-
ing avenues for future research. . . .

AI: To be continued.
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monitors. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, pages 394–403.
ACM, 2018.



14 L. Aceto et al.

17. Adrian Francalanza. A theory of monitors (extended abstract). In Bart Jacobs
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