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Abstract

Aceto et al., proved that, over the process algebra BCCSP with the priority operator of Baeten, Bergstra and
Klop, the equational theory of order-insensitive bisimilarity is not finitely based. However, it was noticed
that by substituting the action prefixing operator of BCCSP with BPA’s sequential composition, the infinite
family of equations used to show that non-finite axiomatisability result could be proved by a finite collection
of sound equations. That observation left as an open question the existence of a finite axiomatisation for
order-insensitive bisimilarity over BPA with the priority operator. In this paper we provide a negative
answer to this question. We prove that, in the presence of at least two actions, order-insensitive bisimilarity
is not finitely based over BPA with priority.

Keywords: Finite Axiomatisations, Bisimilarity, Priority Operator, Sequential Composition

1. Introduction

Process algebras [7, 12] are a classic tool for reasoning about the behaviour of concurrent and distributed
systems, or processes. Briefly, the operational semantics [27] of a process is modelled via a Labelled Transition
System (LTS) [19] in which the computational steps are abstracted into state-to-state transitions having
actions as labels. Then, behavioural equivalences, like bisimulation equivalence [26], are defined on the LTS
in order to compare the behaviour of processes. This comparison is crucial for system verification: to verify
that the actual system meets its specification we check whether their LTSs are behaviourally equivalent. To
this end, an equational axiomatisation of the behavioural equivalence of interest is provided, as it allows for
proving valid equations over processes by replacing equals by equals.

A fundamental feature that has been implemented within the process algebra framework is the possibility
to express that some actions have priority over others (we refer the interested reader to [15] for an overview
of the proposals). This allows for modelling, for example, that an interrupt or shutdown action may be
needed when a system deadlocks or starts exhibiting erroneous behaviour, and, likewise, that a scheduler
needs to assign a different level of urgency to actions based on its scheduling policy. Here we consider the
approach taken in [8], where a priority operator Θ is introduced. This operator is based on an irreflexive
partial order, called the priority order, over the actions that are available to the process, and only allows an
action to be performed if no other action with a higher priority is possible at the given moment.

In the literature we can find a variety of results on the equational theory of the priority operator Θ
in different settings, as we review below. With this paper, we give our contribution to these studies by
discussing the equational axiomatization for a process algebra having both Θ and the sequential composition
operator of BPA [11], modulo a notion of bisimulation equivalence, called order-insensitive bisimilarity [3],
that holds irrespectively of the chosen priority order over actions.
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1.1. On the axiomatisability of priority

Earlier studies on the axiomatisability of the priority operator were carried out with respect to a chosen,
arbitrary, priority order. In the seminal papers [8, 10] it was shown that, provided that the set of actions
is finite, the priority operator admits a finite, ground-complete equational axiomatisation. (A set of axioms
is called ground-complete if every sound equation between process terms without variables can be derived
from those axioms using the rules of equational logic.) For an infinite set of actions, it was proved in [2]
that the operator Θ admits no finite equational axiomatisation over the process algebra BCCSPΘ, which
consists of basic operators from CCS [21] and CSP [18], enriched with Θ. Furthermore, a specific priority
order was exhibited for which no finite equational ground-complete axiomatisation exists.

Later, in [3], the first study of an equational axiomatisation of an equivalence that is irrespective of the
chosen priority order was provided. More precisely, it considers the notion of order-insensitive bisimilarity,
denoted by ↔∗, over processes in BCCSPΘ: two processes are ↔∗-equivalent if they are bisimilar under
every priority order. Now, one may expect that if we consider order-insensitive bisimilarity then there are
no sound equations of interest that involve the priority operator. However, as shown in [3], this is not the
case. If the set of actions contains at least two distinct elements, then there is no finite, ground-complete
equational axiomatisation modulo order-insensitive bisimilarity. To prove their negative result, the authors
of [3] showed that no finite set of equations valid modulo ↔∗ can prove all of the equations in the following
infinite family

an.(b+ c) + an.b+ an.c ≈ an.(b+ c) + an.b+ an.c+ an.Θ(b+ c) (n ≥ 0) . (E)

However, they also remarked that if we replace BCCSP’s action prefixing with BPA’s sequential composition
operator, then all the equations in (E) could be replaced by the following valid equation

x · (b+ c) + x · b+ x · c ≈ x · (b+ c) + x · b+ x · c+ x ·Θ(b+ c) .

This observation left the following open problem:

Is order-insensitive bisimilarity finitely axiomatisable over the process algebra BPAΘ,
namely BPA enriched with the priority operator?

(P)

In this paper, we provide a negative answer to this question.

1.2. Our contribution

Our main result consists in proving that, provided there are at least two distinct actions, the priority
operator admits no finite, ground-complete equational axiomatisation modulo order-insensitive bisimilarity
over the process algebra BPAΘ.

The first issue we need to overcome is that, differently from classical bisimulations, order-insensitive
bisimilarity is not coinductive: the derivatives of two order-insensitive bisimilar processes cannot be, in
general, paired-up in order-insensitive bisimilarity equivalence classes. Hence, we will first of all identify a
class of processes on which order-insensitive bisimilarity always behaves coinductively (Proposition 3).

Then, to prove our negative result we use proof-theoretic techniques that have their roots in Moller’s
classic results to the effect that bisimilarity is not finitely based over CCS (see, e.g., [4, 22–24]). Roughly
speaking, we will identify a special property of processes, called the (n,Θ)-dependency property, associated
with each finite set E of sound axioms and a natural number n. Informally, a process satisfies (n,Θ)-
dependency if by performing a trace of length n it reaches a process whose behaviour depends on the
considered priority order, and is thus determined by the priority operator. Moreover, we require that, at
each step, the process has the possibility of terminating. The idea is that, when n is large enough, whenever
an equation p ≈ q is derivable from E , then either both terms p and q satisfy (n,Θ)-dependency, or none
of them does. The negative result is then obtained by exhibiting an infinite family of valid equations
{en | n ≥ 0} in which the (n,Θ)-dependency property is not preserved, that is, for each n ≥ 0, only one side
of en satisfies (n,Θ)-dependency. Due to the choice of the special property, this means that the equations in
the family cannot all be derived from a finite set of valid axioms and therefore no finite, sound axiom system
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can be complete (Theorem 1). We remark that the requirement on the possibility of termination after each
step will ensure that the processes on both sides of the equations en cannot be written as a sequential
composition, thus preventing the replacement of the infinite family with a finite number of equations that
occurred in the case of the equations in (E).

In the axiom system ACPΘ the axioms for the priority operator made use of an auxiliary operator, called
the unless operator. It is then natural to wonder whether by adding also the unless operator to the syntax
of BPAΘ it would be possible to obtain a finitely based axiomatisation of order-insensitive bisimilarity. We
show that also in this case the answer is negative (Theorem 4).

Finally we study the complexity of the order-insensitive bisimilarity checking. As two processes are
order-insensitive bisimilar if and only if they are bisimilar under all possible priority orders, the simplest
algorithm for order-insensitive bisimilarity would consists in checking all of them. Our main contribution to
this problem is not in the cost of a bisimilarity check, which can be done in O(mt logms), where mt is the
number of transitions and ms the number of states [25], but it consists in showing that we actually need to
do the check for all possible priority orders. In fact, we prove that for each priority order there exists at least
a pair of processes that are bisimilar with respect to all priority orders with the sole exception of the chosen

one (Theorem 6). Following [20], there are 2k2/4+3k/4+O(log k) partial orders over a set of k actions. Hence, we
show that the problem of deciding whether two processes are order-insensitive bisimilar is in coNP and can

be solved in time 2k2/4+3k/4+O(log k) ·O(n2), where n is the sum of the sizes of the two processes (Theorem 5).

1.3. Outline of the paper

We start by reviewing background notions in Section 2. Section 3 gives an informal presentation of
our proof strategy, whose technical development is provided in Sections 4–7. In detail: Section 4 comes
with technical results necessary to reason on the semantics of open process terms. In Section 5 we provide
the properties necessary to ensure that order-insensitive bisimilarity behaves coinductively. In Section 6
we present the (n,Θ)-dependency property of processes necessary to prove our negative result. Our main
result is in Section 7 where we prove that the order-insensitive bisimilarity is not finitely based over BPA
with the priority operator. In Section 8 we briefly argue that the negative result would still hold even if we
enrich the syntax of BPAΘ with the auxiliary operator unless. Then, we devote Section 9 to discussing the
complexity of order-insensitive bisimilarity checking. Finally, we draw some conclusions and discuss future
work in Section 10.

1.4. What’s new

A preliminary version of this paper appeared as [1]. Besides providing the full proofs of our results and
new examples, we have enriched our previous contribution as follows:

a. We discuss the general reasoning behind the proof of our main result (Theorem 1) and present our proof
strategy at an informal level, thus providing a guide for the reader through the technical development of
our result (Section 3).

b. We discuss the possibility of using auxiliary operators to axiomatise the priority operator Θ and thus
regaining a finite ground-complete axiomatisation over the enriched language BPAΘ, modulo bisimilarity.
We argue that due to some features of order-insensitive bisimilarity, this is not the case (Section 8).

c. We discuss the complexity of order-insensitive bisimilarity check and we show that it is indeed necessary
to always check for bisimilarity with respect to all priority orders (Section 9).

2. Background

In this section we review some preliminary notions on operational semantics and equational logic. Since
our work naturally builds on [3, 5] we will use the notation from those papers as much as possible.

3



(r1)
a

a−→>

√√ (r2)
p

a−→>

√√

p · q a−→> q
(r3)

p
a−→> p

′

p · q a−→> p
′ · q

(r4)
p

a−→>

√√

p+ q
a−→>

√√ (r5)
q

a−→>

√√

p+ q
a−→>

√√ (r6)
p

a−→> p
′

p+ q
a−→> p

′ (r7)
q

a−→> q
′

p+ q
a−→> q

′

(r8)
p

a−→>

√√
∀ b > a . p

b−→>6
Θ(p)

a−→>

√√ (r9)
p

a−→> p
′ ∀ b > a . p

b−→>6
Θ(p)

a−→> Θ(p′)

Table 1: Operational semantics of processes in BPAΘ.

2.1. BPAΘ: syntax and semantics

The syntax of process terms in BPAΘ, namely BPA [11] enriched with the priority operator [8], is
generated by the following grammar

t ::= a | x | t · t | t+ t | Θ(t) ,

with a ranging over a set of actions A, x ranging over a countably infinite set of variables V and t ranging
over process terms. We write var(t) for the set of variables occurring in t. A process term is closed if no
variable occurs in it. We shall, sometimes, refer to closed process terms simply as processes. We let P denote
the set of BPAΘ processes and let p, q, . . . range over it.

We use the Structural Operational Semantics (SOS) framework [27] to equip processes with a semantics.

A literal, or open transition, is an expression of the form t
a−→ t′ for some process terms t, t′ and action

a ∈ A. It is closed if both t, t′ are closed process terms.
The inference rules for sequential composition ·, alternative nondeterministic choice + and priority Θ are

reported in Table 1. We remark that the semantics of Θ is based on a strict irreflexive partial order > on A,
called the priority order, which justifies the parametrization of the derived transition relation with respect
to >. For simplicity, given a, b ∈ A, we write a > b for (a, b) ∈ >. To deal with sequential composition
in the absence of deadlock and empty process (see, e.g., [11, 29]), we introduce the termination predicate

−→>

√√
⊆ P × A. Intuitively, t

a−→>

√√
means that t can terminate successfully in one step by performing

action a.
A substitution σ is a mapping from variables to process terms. It extends to process terms, literals and

rules in the usual way and it is closed if it maps every variable to a process. We denote by σ[x 7→ u] the
substitution that maps each occurrence of the variable x into the process term u and behaves like σ over all
other variables.

In [6] it was shown that we can define a stratification [14, 17] on the set of BPAΘ rules by counting the
number of occurrences of the priority operator in the left-hand side of a transition. Hence, the inference
rules in Table 1 induce a unique supported model [6, 16] corresponding to the A-labelled transition system
(P,A,−→>,−→>

√√
) whose transition relation −→> (respectively, predicate −→>

√√
) contains exactly the closed

literals (respectively, predicates) that can be derived by structural induction over processes using the rules
in Table 1.

As usual, we write p
a−→> p′ for (p, a, p′) ∈ −→>, p −→> p′ if p

a−→> p′ for some a ∈ A, and p
a−→>6

if there is no p′ such that p
a−→> p′. For k ∈ N, we write p −→k

> p′ if there are p0, . . . , pk such that

p = p0 −→> · · · −→> pk = p′. Furthermore, for a sequence of actions s = a1 . . . an, we write p
s−→> p

′ to mean
that p

a1−−→> p1
a2−−→> · · · pn−1

an−−→> p
′ for some processes p1, . . . , pn−1.

We associate two classic notions with each process: its depth and its norm. As usual, they express,
respectively, the length of a longest and a shortest sequence of transitions that are enabled for the process.
Since in our setting the length of sequences of enabled transitions depends on the considered priority order,
we define the depth and the norm of a process with respect to the empty order. The reason for this choice
is twofold. Firstly, we notice that the depth defined with respect to the empty order is an upper bound for
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the depths defined with respect to any other priority order. Since for our purposes we will need to consider
upper bounds for the depth of processes, and not the exact value of their depths, it is reasonable to consider
directly the greatest of the depths. Notice that the norm defined with respect to the empty order is, dually,
a lower bound for the norms defined with respect to the other priority orders. Secondly, this choice allows
us to give alternative formulations of both notions by induction on the structure of processes.

Definition 1 (Depth and norm). The depth of a process is defined inductively on its structure by

� depth (a) = 1;

� depth (p1 · p2) = depth (p1) + depth (p2);

� depth (p1 + p2) = max{depth (p1) ,depth (p2)};

� depth (Θ(p)) = depth (p).

Similarly, the norm of process is defined inductively on its structure by

� norm (a) = 1;

� norm (p1 · p2) = norm (p1) + norm (p2);

� norm (p1 + p2) = min{norm (p1) ,norm (p2)};

� norm (Θ(p)) = norm (p).

Both notions can be extended to process terms by adding, respectively, the value of the depth and norm of
a variable which are defined as depth (x) = 1 and norm (x) = 1.

We remark that although variables cannot perform any transition, as one can easily see from the inference
rules in Table 1, their depth, and norm, are set to 1, since the minimal closed instance of a variable with
respect to these measures is as a constant in A.

For p ∈ P, the set of initial actions of p with respect to > is defined as

init>(p) = {a | p a−→> p
′, p′ ∈ P} ∪ {a | p a−→>

√√
}.

We extend this notion to sequences of transitions by letting initk>(p) =
⋃
p−→k

>p
′ init>(p′) and initω>(p) =⋃

k∈N initk>(p) be, respectively, the set of actions that are enabled with respect to > at depth k and at some
depth. We say that action a is maximal with respect to > if there is no b ∈ A such that b > a. We can
restrict this notion to the set of actions that are enabled for a process. Given a process p, we say that an
action a ∈ initω>(p) is maximal in p, or locally maximal, with respect to > if there is no b ∈ initω>(p) such
that b > a. If initω>(p) = {a} then a is locally maximal with respect to >.

2.2. Order-insensitive bisimulation

With the priority operator, the set of transitions that are enabled for each process depends on the
considered priority order on A. Therefore, any bisimulation relation over BPAΘ processes will also depend on
the priority order. In [3], along all such bisimulations, the authors introduced the notion of order-insensitive
bisimilarity, ↔∗, formally defined as the intersection over all priority orders of the related bisimulation
relations. Since ↔∗ disregards the particular order that is considered, it can be used to study general
properties of processes and thus develop a general equational theory for BPAΘ.

Definition 2 (Order-insensitive bisimulation, [3]). Let > be any priority order. A binary symmetric relation
R ⊆ P×P is a bisimulation with respect to > if whenever pR q then

� for all p
a−→> p

′ there is q
a−→> q

′ such that p′R q′, and

� for all p
a−→>

√√
also q

a−→>

√√
holds.
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(e1)
t ≈ t

(e2)
t ≈ u
u ≈ t

(e3)
t ≈ u u ≈ v

t ≈ v
(e4)

t ≈ u
σ(t) ≈ σ(u)

(e5)
t1 ≈ u1 t2 ≈ u2

t1 · t2 ≈ u1 · u2
(e6)

t1 ≈ u1 t2 ≈ u2

t1 + t2 ≈ u1 + u2
(e7)

t ≈ u
Θ(t) ≈ Θ(u)

Table 2: Rules of equational logic over BPAΘ.

We say that p, q are bisimilar with respect to >, denoted by p↔> q, if pR q holds for some bisimulation R
with respect to >.

We say that p, q are order-insensitive bisimilar, denoted by p↔∗ q, if p↔> q holds for all priority orders.

For a given priority order >, the bisimulation equivalence ↔> behaves like a classic bisimulation and
therefore the following lemma, from [3], holds.

Lemma 1 ([3, Proposition 9]). Consider processes p, q, assume p↔> q for some priority order > over A,
and let k ∈ N. Then:

1. For every process p′ such that p −→k
> p
′, there is a process q′ such that q −→k

> q
′ and p′↔> q

′.

2. initk>(p) = initk>(q) so, in particular, init1
>(p) = init1

>(q).

It is not hard to prove that, since the inference rules in Table 1 respect the GSOS format [13], ↔> and
↔∗ are congruences over BPAΘ processes. However, as discussed in [3], ↔∗ does not inherit the coinductive
nature of bisimilarity, as we show in the following example.

Example 1. Consider the processes p = a · b+ a · c+ a · (b+ c) and q = p+ a ·Θ(b+ c). Notice that

� if b > c then a ·Θ(b+ c)↔> a · b,

� if c > b then a ·Θ(b+ c)↔> a · c, and

� if b, c are incomparable with respect to > then a ·Θ(b+ c)↔> a · (b+ c).

Therefore, we have that p↔∗ q. However, q
a−→> Θ(b + c) for each order >, but there is no p′ such that

p
a−→> p

′ and p′↔∗ Θ(b+ c). �

For sake of notation, henceforth, whenever > is the empty order, we simply omit the subscript, i.e.,
−→∅,↔∅ and init∅(·) become, respectively, −→,↔ and init(·).

2.3. Equational logic

An axiom system E is a collection of process equations t ≈ u over the language BPAΘ, such as those
presented in Table 3. An equation t ≈ u is derivable from an axiom system E , notation E ` t ≈ u, if there
is an equational proof for it from E , namely if it can be inferred from the axioms in E using the rules of
equational logic, which are reflexivity, symmetry, transitivity, substitution and closure under BPAΘ contexts,
and are reported in Table 2.

Let E be a sound set of axioms. Rules (e1)-(e4) are common for all process languages and they ensure
that E is closed with respect to reflexivity, symmetry, transitivity and substitution, respectively. Rules
(e5)-(e7) are tailored for BPAΘ and they ensure the closure of E under BPAΘ contexts. They are therefore
referred to as the congruence rules. Briefly, rule (e5) is the rule for sequential composition and it states that
whenever E ` t1 ≈ u1 and E ` t2 ≈ u2, then we can infer E ` t1 · u1 ≈ t2 · u2. Rule (e6) deals with the
nondeterministic choice operator in a similar way and rule (e7) ensures that the priority operator preserves
the equivalence of terms.
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C1 x+ y ≈ y + x S1 (x · y) · z ≈ x · (y · z)
C2 (x+ y) + z ≈ x+ (y + z) S2 (x+ y) · z ≈ (x · z) + (y · z)
C3 x+ x ≈ x

P1 Θ(Θ(x) + y) ≈ Θ(x+ y)
P2 Θ(x) + Θ(y) ≈ Θ(x) + Θ(y) + Θ(x+ y)
P3 Θ(x · y) ≈ Θ(x) ·Θ(y)
P4 Θ(x · y + x · z + w) ≈ Θ(x · y + w) + Θ(x · z + w)
P5 Θ(a) ≈ a

Table 3: Some axioms of BPAΘ.

As elsewhere in the literature, we assume, without loss of generality, that for each axiom in E also the
symmetric counterpart is in E , so that the symmetry rule is not necessary in the proofs, and that substitution

rules are always applied first in equational proofs, which means that the substitution rule t ≈ u
σ(t) ≈ σ(u)

may

only be used for axioms t ≈ u in E . If this is the case, then σ(t) ≈ σ(u) is called a substitution instance of
the axiom.

The process equation t ≈ u is said to be sound with respect to ↔∗ if σ(t) ↔∗ σ(u) for all closed
substitutions σ. For simplicity, if t ≈ u is sound, then we write t↔∗ u. An axiom system is sound modulo
↔∗ if and only if all of its equations are sound modulo ↔∗. Conversely, we say that E is ground-complete
modulo ↔∗ if p↔∗ q implies E ` p ≈ q for all processes p, q. We say that ↔∗ is finitely based, if there is a
finite axiom system E such that E ` t ≈ u if and only if t↔∗ u. Finally, notice that the notion of depth can
be extended to equations by letting depth (t ≈ u) = max{depth (t) ,depth (u)}.

3. Towards a negative result

As disclosed in the Introduction, our order of business for the remainder of this paper will be to prove
the following theorem:

Theorem 1. If the set of actions A contains at least two distinct actions, then the language BPAΘ modulo
order-insensitive bisimilarity is not finitely based.

Due to the heavy amount of technical results that are needed to fulfill this purpose, we decided to dedicate
this section to an informal description of our proof strategy. Hopefully, this will improve the readability
of our paper and work as a guide for the reader in their journey through the technical development of our
results.

3.1. The idea

Our method stems from [22–24], in which Moller discussed the axiomatiazability of the parallel com-
position operator and proved that (a fragment of) CCS modulo bisimilarity is not finitely based. The key
idea is to identify a special property of BPAΘ terms, say P(n) for n ≥ 0, that, when n is large enough, is
preserved by provability under finite axiom systems. Roughly, this means that if E is a finite set of axioms
that are sound modulo order-insensitive bisimilarity, the equation p ≈ q is provable from E , and n is greater
than the depth of the equations in E , then either both p and q satisfy P(n), or none of them does. Then we
introduce a family of infinitely many equations {en | n ≥ 0} that are all sound modulo ↔∗, but are such
that only one side of en satisfies P(n), for each n ≥ 0. This implies that the family of equations cannot be
derived from any finite axiom system that is sound modulo ↔∗ and, hence, at least infinitely many of those
equations must be included in the axiomatisation, which is therefore not finitely based.
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3.2. The choice of P(n)

The property P(n) will involve the priority operator. We shall say, in a very informal way, that P(n) will
be satisfied by a process p if it reaches, through a sequence of n steps, a process, say p′, whose behaviour
is determined by Θ. Intuitively, this means that p′ behaves differently under different priority orders. For
instance, p′ could be of the form Θ(Θ(Θ(a) + b · p′′)) for some a 6= b and process p′′. Then p′ affords an
a-transition and no b-transition if a > b, whereas p′ affords a b-transition and no a-transition if b > a. It
is important that A contains at least two actions, so that we can have different priority orders (possibly)
triggering different behaviours of Θ-terms. Moreover, p′ must have (a nesting of) Θ as head operator and
a nondeterministic choice between (at least) two processes having distinct sets of initial actions must occur
within the scope of such (nesting of) Θ.

Borrowing the terminology from [3], we will call Θ-dependent the process terms whose initial behaviour
depends on the priority order. The choice of involving Θ-dependent terms in P(n) is strongly related to
the fact that we are considering order-insensitive bisimilarity. In fact, as we need to take into account the
behaviour of processes with respect to all priority orders, then no axiom can be used to eliminate the head
occurrence of Θ from Θ-dependent terms. These terms and their properties will be presented in Section 6.

There is, however, another feature of order-insensitive bisimilarity that we will need to take into account
to properly define the property P(n). As previously outlined, differently from classic notions of bisimulations,
↔∗ does not have, in general, a coinductive construction. Hence, to simplify the reasoning in the proofs,
we need to define P(n) in such a way that only those processes on which ↔∗ can be defined coinductively
could satisfy it. To this end we introduce, in Section 5, the notion of uniform determinacy as a sufficient
condition to ensure the coinductive behavior of ↔∗.

The special property P(n) is then defined, in Section 6, as the property of uniform (n,Θ)-dependency of
processes, which combines the ideas of determinacy and Θ-dependency of processes and, in addition, will
require that all the processes in the sequence of n steps leading to the Θ-dependent term have norm 1. This
is to guarantee that no axiom for sequential composition can be used to rewrite such a sequence.

3.3. The choice of n

The choice of n large enough will play a fundamental role in proving that whenever p satisfies P(n)
then so does q, especially in the case in which p ≈ q is derived by an application of the substitution rule
of equational logic (rule (e4) in Table 2). In this case, we have p = σ(t) and q = σ(u) for some closed
substitution σ and BPAΘ terms t, u such that t ≈ u ∈ E . Then, if n is large enough, which translates into n
being greater than the depth of the equations in E (and thus of the depth of all the terms occurring in such
equations), we can prove that the fact that p satisfies P(n) is due to the behaviour of the closed instance
of some variable x occurring in t. We can also prove that for t ≈ u to be sound modulo ↔∗, whenever a
variable x occurs in t then it must also occur in u. Actually, we are going to prove the stronger result that
if such an occurrence of x in t is within the scope a priority operator, then so is the occurrence of x in u.
Hence, we can infer that σ(x) will trigger in σ(u) the same behaviour that it induced in σ(t), and thus that
also q = σ(u) will satisfy P(n).

To obtain all the results mentioned in this subsection it will be fundamental to study the decomposition
of the behaviour of closed instances of terms with respect to the behavior of the closed instances of variables
occurring in them. Section 4 is devoted to such an analysis.

3.4. The family of equations

Consider the processes {Pn}n∈N, defined as follows

Pn = An(a) +An(b) +An(a+ b) (n ≥ 0)

where A0(p) = p

and An+1(p) = a ·An(p) + a (n ≥ 0) .

Intuitively, the process Pn must at the top level decide whether it will end up in a, b, or a + b after n
steps. After making this choice, it can take up to n a-transitions, and at each step it can choose whether
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to terminate or to continue. The possibility of termination at each step is crucial, since it means that the
process cannot be written just with sequential composition modulo bisimilarity.

As we will formally prove in Section 7, the following family of infinitely many sound equations shows
that order-insensitive bisimilarity is not finitely based over BPAΘ

en : Pn +An(Θ(a+ b)) ≈ Pn (n ≥ 0) . (1)

Informally, each equation en is sound, because, according to which priority order is considered, Θ(a+ b)
will be bisimilar to a, b or a + b, and thus the two sides of en are order-insensitive bisimilar. However,
process An(Θ(a + b)) can be proved to be uniformly (n,Θ)-dependent, whereas Pn is not. We will argue
that this implies that not all the equations in the family {en}n∈N can be derived from a finite set of valid
axioms, thus proving Theorem 1.

4. Relation between open and closed operational behaviour

Our purpose in the remainder of this paper is to verify whether the axiomatisation for order-insensitive
bisimilarity is finitely based over BPAΘ. To address this question it is fundamental to establish a correspon-
dence between the behaviour of open terms and the semantics of their closed instances, with a special focus
on the role of variables. In this section, we provide the notions and theoretical results necessary to establish
the desired behavioural correspondence.

4.1. From open to closed transitions. . .

Assume a term t, a closed substitution σ, a process p, an action a and a priority order >. We aim at
investigating how to derive a transition of the form σ(t)

a−→> p, as well as a predicate σ(t)
a−→>

√√
, from the

behaviour of t and of σ(x) for each variable x occurring in t. In particular we are interested in relating the
initial behaviour of σ(t) with the behaviour of closed instances of variables occurring in it.

The simplest case is a direct application of the operational semantics in Table 1: if action a is maximal
with respect to >, then σ(t)

a−→> p can be inferred directly from t
a−→> t

′, for some term t′ with σ(t′) = p.
In fact, the maximality of a guarantees that the execution of the a-transition cannot be prevented by any
occurrence of the priority operator. A similar reasoning holds for transition predicates.

Lemma 2. Let t, t′ be process terms, let a be an action with maximal priority with respect to >. Then for
all substitutions σ it holds that:

1. If t
a−→>

√√
then σ(t)

a−→>

√√
.

2. If t
a−→> t

′ then σ(t)
a−→> σ(t′).

Next we deal with variables. It may be the case, for instance, that the term t is of the form t = x · u
for some term u. Clearly, the behaviour of σ(t), and thus the derivation of σ(t)

a−→> p, will depend on the
behaviour of σ(x). However, the set of initial actions of σ(t) does not depend, in general, solely on those of
σ(x), but also on the structure of the process into which x is mapped, and on the occurrence of x in t. For
instance, for t = x · u we can distinguish two main situations:

(I) Suppose σ(x) = a, so that σ(x)
a−→>

√√
. This would give σ(t)

a−→> p for p = σ(u), namely p is a closed
instance of a subterm of t. Therefore, the transition for σ(t) could be expressed in terms of a closed
instance of an open transition for t, as t −→> u. However, notice that the action that is performed
cannot be obtained from the term t as it depends solely on the substitution applied to x. Hence, we
will need a formal way to express that the label of the transition depends on x.

(II) Suppose σ(x) = a · b, so that σ(x)
a−→> b. Clearly, σ(t) will have to mimic such behaviour, and

thus σ(t)
a−→> p with p = b · σ(u). Notice that process p subsumes what’s left of the behaviour of

σ(x). Then the transition for σ(t) cannot be inferred from a closed substitution instance of an open

transition of the form t
a−→> t

′, since the structure of t′ cannot be known until the substitution σ(x)
has occurred. Hence, we will need a formal way to express that to reach a subterm of t we need to
follow a sequence of transitions performed by x.

9



(a1)
x

xs−−→> xd
(a2)

x
x−→>

√√

(a3)
t
xs−−→> c

t · u xs−−→> c · u
(a4)

t
x−→> t

′

t · u x−→> t
′ · u

(a5)
t
x−→>

√√

t · u x−→> u

(a6)
t
xs−−→> c

t+ u
xs−−→> c

(a7)
t
x−→> t

′

t+ u
x−→> t

′ (a8)
t
x−→>

√√

t+ u
x−→>

√√

(a9)
t
xs−−→> c

Θ(t)
xs−−→> Θ(c)

(a10)
t
x−→> t

′

Θ(t)
x−→> Θ(t′)

(a11)
t
x−→>

√√

Θ(t)
x−→>

√√

Table 4: Inference rules for the auxiliary transition relations. The symmetric versions of rules a6–a8 have been omitted.

For a formal development of the analysis in the above-mentioned cases, we exploit the method proposed in
[5] and provide an auxiliary operational semantics tailored for expressing the behaviour of process terms
resulting from that of closed substitution instances for their variables.

Firstly we introduce the notion of configuration over BPAΘ terms, which stems from [5]. Configurations
are terms defined over a set of variables Vd = {xd | x ∈ V}, disjoint from V, and BPAΘ terms. We use the
variable xd to express that the closed instance of x has started its execution, but has not terminated yet.

Definition 3 (BPAΘ configuration). The collection of BPAΘ configurations is given by:

c ::= t |xd | c · t |Θ(c),

where t is a BPAΘ term and xd ∈ Vd.

Notice that the grammar above guarantees that each configuration contains at most one occurrence of a
variable in Vd, say xd, and if such occurrence is in the scope of sequential composition, then xd must occur
as the first symbol in the composition.

Define the set of variable labels Vs = {xs | x ∈ V}, disjoint from V, and assume any priority order >.

We then introduce two auxiliary relations
xs−−→>,

x−→>, and the auxiliary predicate
x−→>

√√
, whose operational

semantics is given in Table 4. These allow us to express how the initial behaviour of a term can be derived
from that of the variables occurring in it. Informally, the labels allow us to identify the variable that induces
a particular transition. Transitions of the form t

x−→> t
′ and predicates t

x−→>

√√
allow us to deal with the

case described in item (I) above. Conversely, transitions t
xs−−→> c are used for the case in item (II). The

configuration c stores the yet-to-terminate behaviour of σ(x). As an example, for the terms in item (II) we

would have c = xd · u, and, since σ(x)
a−→> b, we would let σ[xd 7→ b](c) = b · σ(u).

The following lemma formalizes the intuitions above. To avoid conflicts with any possible occurrence
of the priority operator, we focus only on transitions labeled with actions that are (locally) maximal with
respect to the chosen priority operator >. This type of transition will be sufficient for our purposes in the
rest of the paper.

Lemma 3. Let t be a process term, x a variable, σ a substitution and a ∈ A be maximal with respect to >.
Then:

1. If t
x−→>

√√
and σ(x)

a−→>

√√
, then σ(t)

a−→>

√√
.

2. If t
x−→> t

′ and σ(x)
a−→>

√√
, then σ(t)

a−→> σ(t′).

3. If t
xs−−→> c and σ(x)

a−→> p for some process p, then σ(t)
a−→> σ[xd 7→ p](c).

Proof. The proof proceeds by induction over the derivation of the considered auxiliary predicates and tran-
sitions and can be found in Appendix A.1.
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We will sometimes need to extend the third case of Lemma 3 to sequences of transitions. To this end,
we provide first an auxiliary technical lemma, that will simplify our reasoning.

Lemma 4. Let a ∈ A be maximal with respect to >, and let σ be a closed substitution. Consider a
configuration c, and processes p, p′ such that p

a−→> p′. If c contains an occurrence of xd, then σ[xd 7→
p](c)

a−→> σ[xd 7→ p′](c).

Proof. The proof proceeds by structural induction over the configuration c and can be found in Appendix
A.2.

We can now show that the decomposition of the semantics can be extended to sequences of transitions,
and we can thus apply inductive arguments to them.

Lemma 5. Let σ be a closed substitution. If t
xs−−→> c and σ(x) −→n

> p is such that all actions taken along
the transitions from σ(x) to p are maximal with respect to >, then σ(t) −→n

> σ[xd 7→ p](c).

Proof. The proof proceeds by a simultaneous induction over the derivation of the auxiliary transition t
xs−−→> c

and over n ∈ N, and can be found in Appendix A.3.

4.2. . . . and back again

So far we have provided a way to derive the initial behaviour of a term from the open transitions available
for it, especially when determined by variables. Our aim is now to obtain a converse result: knowing that
σ(t)

a−→> p, we want to charcterise its possible sources in the behaviour of t and of the closed instances of
the variables occurring in t.

Firstly, we remark that in Section 4.1 we have considered open process terms and thus no occurrence of
a priority operator, due to substitutions of variables possibly occurring in them, could have been foreseen.
Therefore, to avoid conflicts, we have limited our attention to actions that were (locally) maximal with
respect to the considered priority order. However, we now start from the closed process term σ(t) and
therefore we can properly relate the behaviour of the closed instances of variables to their potential occurrence
in the scope of a priority operator. To this end, we introduce the relation of initial enabledness between a
variable x and a term t with respect to a natural number l ∈ N, notation x /l t. Informally, x /l t holds if
x occurs in the scope of l-nested applications of the priority operator in t and the initial behaviour of σ(t)
is possibly determined by σ(x), for all substitutions σ. Initial enabledness extends relation /l from [3], that
was defined on BCCSPΘ terms, to BPAΘ terms.

Definition 4 (Initial enabledness, /l). The relations /l, for l ∈ N, between variables and terms are defined
as the least relations satisfying the following constraints:

1. x /0 x;

2. if x /l t then x /l t+ u and x /l u+ t;

3. if x /l t then x /l t · t′;

4. if x /l t then x /l+1 Θ(t).

If x /l t, for some l ∈ N, we say that x is initially enabled in t. We say that x is initially disabled in t,
otherwise.

Example 2. Consider the terms t1 = x · Θ(u1), for some term u1 such that x 6∈ var(u1), and t2 =
Θ(Θ(Θ(t1 + u2) · y)) · u3, for some variable y 6= x and terms u2, u3, such that x 6∈ var(u2), var(u3). Then we
have that x /0 t1, x /0 t1 + u2 and x /3 t2, so that x is initially enabled in t1, t1 + u2 and t2.

Conversely, variable y is initially disabled in t2 as it occurs as second argument of a sequential composition
operator. Notice that this implies that no action performed by any closed substitution instance of y can
trigger a transition of the corresponding closed instance of t2. �
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As stated by the following lemma, there is a close relation between x being initially enabled in t and the
auxiliary transition t

xs−−→> c. We write t = t1 � t2 to mean that either t = t1 or t = t1 · t2, i.e., t1 may
possibly be sequentially followed by t2. We extend this notation to nested occurrences of possible sequential
compositions � by t

⊙n
i=1 ti = (. . . (t� t1)� . . . )� tn. Then, for a process term t and l ∈ N we define the

set of terms Θl
�(t) inductively as follows:

Θ0
�(t) =

{
u | u = t

n⊙
i=1

ti for some n ∈ N and terms t1, . . . , tn

}

Θl+1
� (t) =

{
u | u = Θ(u′ � t′)

n⊙
i=1

ti for some u′ ∈ Θl
�(t), n ∈ N and terms t′, t1, . . . , tn

}
.

In what follows, we write t −→> Θl
�(t′) to denote that t −→> u for some u ∈ Θl

�(t′). Substitutions and
transitions are lifted to Θl

�(t) in a similar fashion.

Lemma 6. Let x be a variable, t a term and l ∈ N. Then, x /l t if and only if t
xs−−→> Θl

�(xd).

Proof. The proof can be found in Appendix A.4.

The notation Θl
�(xd) abstracts away from a tail of nested (possible) sequential compositions. This choice

is merely for simplification purposes and does not impact the technical development of our results. In fact,
the behaviour of the terms in the tail and their closed instances will never play a role in the results, as
only the contribution of closed instances of xd to the behaviour of terms in Θl

�(xd) will be of interest. We
remark also that Θ0

�(xd) denotes a configuration containing an occurrence of xd which is not in the scope
of a priority operator.

Example 3. Consider the terms t1, t2 in Example 2 and assume a priority order >. Since x
xs−−→> xd, by

rule (a3) in Table 4 we get t1
xs−−→> xd ·Θ(u1) which, by rule (a6) in Table 4, gives t1 + u2

xs−−→> xd ·Θ(u1).

Hence, by three applications of rule (a9) and as many of rule (a3), we infer that t2
xs−−→> Θ(Θ(Θ(xd ·Θ(u1)) ·

y)) ·u3. Notice that the right-hand side of the transition from t2 is of the form Θ3
�(xd) and that the trailing

Θ(u1), y, u3 played no role in the derivation of such a transition. �

We are now ready to derive the behaviour of the term t and that of the closed instances of the variables
occurring in t, from the transitions enabled for σ(t).

Proposition 1. Let t be a process term, σ a closed substitution, a an action and p a process. Then:

1. If σ(t)
a−→>

√√
then

(a) either t
a−→>

√√
;

(b) or there is a variable x such that t
x−→>

√√
and σ(x)

a−→>

√√
.

2. If σ(t)
a−→> p then one of the following applies:

(a) there is a process term t′ such that t
a−→> t

′ and σ(t′) = p;

(b) there are a process term t′ and a variable x such that t
x−→> t

′, σ(x)
a−→>

√√
and σ(t′) = p;

(c) there are a variable x, a natural number l ∈ N, and a process q such that t
xs−−→> Θl

�(xd),

σ(x)
a−→> q and p ∈ Θl

�(q).

Proof. 1. We proceed by induction over the derivation of σ(t)
a−→>

√√
.

� Base case: the last rule applied in the derivation of σ(t)
a−→>

√√
is (r1) in Table 1. This means

that either t = a, or t = x with σ(x) = a. In the former case it follows that t
a−→>

√√
by rule (r1)

in Table 1 and in the latter it follows that t
x−→>

√√
by rule (a2) in Table 4 and σ(x)

a−→>

√√
.
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� Inductive step t = t1 + t2 and σ(t)
a−→>

√√
is derived either by rule (r4) in Table 1, and thus

by σ(t1)
a−→>

√√
, or by rule (r5) in Table 1, and thus by σ(t2)

a−→>

√√
. Assume, without loss of

generality, that rule (r4) was applied. By induction over σ(t1)
a−→>

√√
we can distinguish two

cases:

– t1
a−→>

√√
. Then by rule (r4) in Table 1 we derive that t

a−→>

√√
.

– There is a variable x such that t1
x−→>

√√
and σ(x)

a−→>

√√
. Hence, by applying rule (a8) in

Table 4 we derive that, for the same variable x, t
x−→>

√√
.

� Inductive step: t = Θ(u) and σ(t)
a−→>

√√
is derived by rule (r8) in Table 1. This implies that

σ(u)
a−→>

√√
and σ(u)

b−→>6 for all b > a. By induction over σ(u)
a−→>

√√
we can distinguish two

cases:

– u
a−→>

√√
. Since moreover from σ(u)

b−→>6 for all b > a we can infer that u
b−→>6 for all such b,

the premises of rule (r8) in Table 1 are satisfied and we can derive that t
a−→>

√√
.

– There is a variable x such that u
x−→>

√√
and σ(x)

a−→>

√√
. By applying rule (a11) in Table 4

we derive that, for the same variable, t
x−→>

√√
.

2. We proceed by induction over the derivation of σ(t)
a−→> p. Hence, we assume that the property

in Proposition 1.2 has been proven for all proper subderivations of the derivation of σ(t)
a−→> p. We

proceed by a case analysis over the structure of t to prove that the desired property holds for σ(t)
a−→> p

as well. Notice that the case t = a is vacuous, since there is no closed term p such that a
a−→> p.

� Case: t = x. Then case (2c) is satisfied directly by rule (a1) in Table 4.

� Case: t = t1 · t2. We can distinguish two cases:

– σ(t)
a−→> p is derived by rule (r2) in Table 1, namely by σ(t1)

a−→>

√√
and p = σ(t2). From

σ(t1)
a−→>

√√
and Proposition 1.1 we get that either t1

a−→>

√√
or there is a variable x such

that t1
x−→>

√√
and σ(x)

a−→>

√√
. In the former case we can apply rule (r2) in Table 1 and

obtain t
a−→> t2 with σ(t2) = p, thus case (2a) is satisfied. In the latter case we can apply

rule (a5) in Table 4 and obtain t
x−→> t2 which together with σ(t2) = p and σ(x)

a−→>

√√

satisfies case (2b).

– σ(t)
a−→> p is derived by rule (r3) in Table 1, namely by σ(t1)

a−→> p1 with p1 = q · σ(t2). By

induction over σ(t1)
a−→> p1 we can distinguish three cases:

* Case (2a) applies so that there is a process term t′1 such that t1
a−→> t

′
1 and σ(t′1) = p1.

Then, by rule (r3) in Table 1 we infer that t
a−→> t

′
1 · t2 with σ(t′1) · σ(t2) = p, and thus

case (2a) is also satisfied by t.

* Case (2b) applies so that there are a process term t′1 and a variable x such that t1
x−→> t

′
1,

σ(x)
a−→>

√√
and σ(t′1) = p1. Then, by rule (a4) in Table 4 we infer that t

x−→> t
′
1 · t2 with

σ(x)
a−→>

√√
and σ(t′1) · σ(t2) = p, and thus case (2b) is also satisfied by t.

* Case (2c) applies so that there are a variable x, a natural l ∈ N and a process s such that

t1
xs−−→> Θl

�(xd), σ(x)
a−→> q and p1 ∈ Θl

�(q). Notice that, since in the construction of
Θl
�(xd) we allow the nesting of trailing sequential components to be of arbitrary depth,

we can infer that for all u ∈ Θl
�(xd) the term u · t2 is also in Θl

�(xd). Then, by rule (a3)

in Table 4 we infer that t
xs−−→> Θl

�(xd). Hence case (2c) is also satisfied by t with respect
to Θl

�(xd), the variable x, the natural l ∈ N and the process q for which p ∈ Θl
�(q).

� Case: t = t1 + t2 and σ(t)
a−→> p is derived either from σ(t1)

a−→> p orσ(t2)
a−→> p, namely by

applying either rule (r6) or rule (r7) in Table 1. Since induction applies to such a move taken
by σ(ti) and in all the rules for nondeterministic choice in Tables 1 and 4 the moves of ti are
mimicked exactly by t, we can infer that each of the three cases of Proposition 1.2 holds for t
whenever it holds for ti.
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� Case: t = Θ(u) and σ(t)
a−→> p is derived by applying rule (r9) in Table 1. This implies that

σ(u)
a−→> p1, with Θ(p1) = p, and σ(u)

b−→>6 for all b > a. By induction over σ(u)
a−→> p1 we can

distinguish three cases:

– Case (2a) applies so that there is a process term u′ such that u
a−→> u′ and σ(u′) = p1.

Moreover, we remark that from σ(u)
b−→>6 for all b > a, it follows that u

b−→>6 for all b > a.

Then, by rule (r9) in Table 1 we infer that t
a−→> Θ(u′) with σ(Θ(u′)) = p, and thus case

(2a) is also satisfied by t.

– Case (2b) applies so that there are a process term u′ and a variable x such that u
x−→> u

′,

σ(x)
a−→>

√√
and σ(u′) = p1. Then, by rule (a10) in Table 4 we infer that t

x−→> Θ(u′) with

σ(x)
a−→>

√√
and σ(Θ(u′)) = p, and thus case (2b) is also satisfied by t.

– Case (2c) applies so that there are a variable x, a natural l ∈ N and a process q such that

u
xs−−→> Θl

�(xd), σ(x)
a−→> q and p1 ∈ Θl

�(q). Now we notice that for each u ∈ Θl
�(xd) it

holds that Θ(u) ∈ Θl+1
� (xd). Then, by rule (a9) in Table 4 we infer that t

xs−−→> Θl+1
� (xd).

Hence case (2c) is also satisfied by t with respect to the variable x, the natural l+ 1 and the
process q for which p ∈ Θl+1

� (q).

Assume a process term t and suppose that depth (t) = k for some k ∈ N. We recall that the notion
of depth as we have defined it in Definition 1 is with respect to the empty priority order. Clearly, given
any closed substitution σ we will have that depth (σ(t)) = n for some n ≥ k. In particular, whenever n is
strictly greater than k we can infer that at least one variable occurring in t has been mapped into a process
defined using the sequential composition operator. Hence, we need to extend Proposition 1 to sequences of
transitions of arbitrary length.

To this end, we introduce the following notation: let w ∈ (A ∪ V)∗ be a string w = α1 . . . αh in which

each αi can be either an action or a variable. Then, given a substitution σ, we write t
s1...sh−−−−−→>,w t

′ if there
are process terms t0, . . . , th such that t = t0, t′ = th, and, for all i ∈ {1, . . . , h},

� si ∈ A∗;

� if αi ∈ V, then σ(αi)
si−−→>

√√
and ti−1

si−−→> ti;

� if αi ∈ A, then si = αi and ti−1
αi−−→> ti.

Finally, we write |s1 . . . sh| for the length of s1 . . . sh.

Example 4. Consider the term t = a·b·x·u, for some term u, and the strings w1 = ab and w2 = abx. Clearly,

as string w1 only considers the execution of a particular sequence of actions, we can write t
ab−−→>,w1

x · u
since t

a−→> b · x · u b−→> x · u. Conversely, string w2 requires concatenating the first two steps of t with
the behavior of the variable x. Assume, for instance, a closed substitution σ with σ(x) = a · a · b, namely

σ(x)
aab−−−→>

√√
. Then, for the chosen substitution, we can unfold the behaviour of x in that of t, and write

t
abaab−−−−→>,w2

u. �

We also notice that by Lemma 4, if p
a−→> p

′ for some action a having (locally) maximal priority with

respect to >, then σ[xd 7→ p](Θl
�(xd))

a−→> σ[xd 7→ p′](Θl
�(xd)). In this case, we abuse notation slightly

and write directly Θl
�(p)

a−→> Θl
�(p′).

Proposition 2. Let t be a process term, σ a closed substitution, n ∈ N and p a process. If σ(t) −→n
> p then:

1. there exist a process term t′, a string w ∈ (A ∪ V)∗ and s1 . . . sh ∈ A∗ such that t
s1...sh−−−−−→>,w t′,

σ(t′) = p, and |s1 . . . sh| = n;
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2. or t
s1...sh−−−−−→>,w t

′ for some w ∈ (A ∪ V)∗ and s1 . . . sh such that |s1 . . . sh| = k < n, and there are

a variable x, a natural number l ∈ N and a process q, such that t′
xs−−→> Θl

�(xd), σ(x) −→n−k
> q and

p ∈ Θl
�(q).

Proof. We proceed by induction over n.

� Base case n = 1. This directly follows by Proposition 1.2.

� Inductive step n > 1. σ(t) −→n
> p is equivalent to writing σ(t) −→> p1 −→n−1

> p, for some process

p1. We can assume without loss of generality that σ(t)
a−→> p1. According to Proposition 1.2, from

σ(t)
a−→> p1 we can distinguish three cases:

1. there is a process term t1 such that t
a−→> t1 and σ(t1) = p1. Then by induction over p1 −→n−1

> p
we can distinguish two subcases:

– there is w1 ∈ (A∪V)∗ with t1
s1...sh−−−−−→>,w1

t′ such that |s1 . . . sh| = n−1 and σ(t′) = p. Then,

the proof can be concluded by noticing that for the sequence w = aw1 we get t
as1...sh−−−−−→>,w t

′

with |as1 . . . sh| = n and σ(t′) = p.

– there are w1 ∈ (A∪V)∗, a variable y, a natural l ∈ N and a process q, such that t1
s1...sh−−−−−→>,w1

t′

with |s1 . . . sh| = k < n− 1, t′
ys−−→> Θl

�(yd), σ(y) −→n−1−k
> q and p ∈ Θl

�(q). Then, the proof

can be concluded by noticing that for the sequence w = aw1 we get t
as1...sh−−−−−→>,w t

′ with
|as1 . . . sh| = k + 1 < n and y, l, q behave as before.

2. there are a process term t1 and a variable x such that t
x−→> t1, σ(x)

a−→>

√√
and σ(t1) = p1.

Then by induction over p1 −→n−1
> p we can distinguish two subcases:

– there is w1 ∈ (A ∪ V)∗ with t1
s1...sh−−−−−→> t

′ such that |s1 . . . sh| = n− 1 and σ(t′) = p. Then,

the proof can be concluded by noticing that for the sequence w = xw1 we get t
as1...sh−−−−−→>,w t

′

with |as1 . . . sh| = n, as |a| = 1, and σ(t′) = p.

– there are w1 ∈ (A∪V)∗, a variable y, a natural l ∈ N and a process q, such that t1
s1...sh−−−−−→>,w1

t′

with |s1 . . . sh| = k < n− 1, t′
ys−−→> Θl

�(yd), σ(y) −→n−1−k
> q and p ∈ Θl

�(q). Then, the proof

can be concluded by noticing that, since σ(x)
a−→>

√√
gives |a| = 1, for the sequence w = xw1

we get t
as1...sh−−−−−→>,w t

′ with |as1 . . . sh| = k + 1 < n and c, x, q behave as before.

3. there are a variable x, a natural l ∈ N and a process p′ such that t
xs−−→> Θl

�(xd), σ(x)
a−→> p

′

and p1 ∈ Θl
�(p′). Recall that, per assumption, p1 −→n−1

> p. Since, p1 ∈ Θl
�(p′), we have that

either all, or part of, the transitions in the sequence p1 −→n−1
> p are executed within the scope

of a priority operator (unless l = 0, but then this case would be an instance of Proposition 2.1).
Therefore, we are guaranteed that the actions labelling the transitions that are performed in the
scope of Θ are all locally maximal with respect to >. Therefore, Lemma 5 allows us to distinguish
two cases:

– σ(x) −→h
> q for some h ≥ n. In this case the proposition follows by taking the empty string

for w and the process q′ such that σ(x) −→n
> q
′ and p ∈ Θl

�(q′).

– σ(x) −→k
> q −→>

√√
for some k < n. Notice that this implies that there is some string sx with

|sx| = k of actions that have been performed by σ(x). Due to the structure of Θl
�(xd) we

can infer that there are a natural m ∈ N and a process term

t1 = Θ(· · ·Θ︸ ︷︷ ︸
m times

(t′′ � um+1)� um) . . . )� u1

such that σ(t) −→k
> σ(t1) = p1. Since then p1 −→n−k

> p, by induction we can distinguish two
subcases:
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* there is w1 ∈ (A ∪ V)∗ with t1
s1...sh−−−−−→>,w1

t′ such that |s1 . . . sh| = n − k and σ(t′) = p.
Then, the proof can be concluded by noticing that for the sequence w = xw1 we get
t
sxs1...sh−−−−−−→>,w t

′ with |sxs1 . . . sh| = n, as |sx| = k, and σ(t′) = p.

* there are w1 ∈ (A∪V)∗, a variable y, a process q′, and m′ ∈ N, such that t1
s1...sh−−−−−→>,w1

t′

with |s1 . . . sh| = j < n − k, t′
ys−−→> Θm′

� (yd), σ(y) −→n−k−j
> q′ and p ∈ Θm′

� (q′). Then,
the proof can be concluded by noticing that, as |sx| = k, for the sequence w = xw1 we

get t
sxs1...sh−−−−−−→>,w t

′ with |sxs1 . . . sh| = k + j < n and y,m′, q′ as above.

The following result allows us to establish whether the behaviour of two bisimilar process terms is
determined by the same variable. Moreover, it guarantees that such a variable is initially enabled in one
term if and only if it is initially enabled in the other one.

Theorem 2. Assume that A contains at least two actions, a and b. Let x be a variable. Consider two
process terms t and u such that initω(t) ⊆ {a} and t↔∗ u. Whenever there is t′ such that t −→k t′, for some
k ∈ N, and x/l t

′, for some l ∈ N, then there is u′ such that u −→k u′ and x/mu
′ for some m ∈ N. Moreover,

l = 0 if and only if m = 0.

Proof. Let n ∈ N be larger than the depths of t and u, and assume the priority order > = {(b, a)} over A.
We define the family of closed substitutions {σi}i∈N inductively as follows:

σ0(y) =

{
a+ b if y = x

a otherwise.

σi(y) =

{
a · (σi−1(y) + a) if y = x

a otherwise.

Let σ = σn. Suppose that t −→k t′, for some k ∈ N. As initω(t) ⊆ {a} we can infer that there are process

terms t0, . . . , tk such that t = t0
a−→ . . .

a−→ tk = t′ (if init(t) = ∅ then k = 0 and t = t′). Moreover, as in all
such terms ti there is no occurrence of b, a is maximal with respect to > on them, and thus by Lemma 2

and an easy induction over k, we obtain that σ(t0)
a−→
k
σ(tk) = σ(t′) (σ(t) = σ(t′) if init(t) = ∅). Suppose

now that x /l t
′, for some l ∈ N. By Lemma 6, x /l t

′ implies that t′
xs−−→> Θl

�(xd). By the choice of σ we

have that σ(x)
a−→
n

> a+ b. Therefore, by Lemma 5 we obtain that σ(t′)
a−→
n

> p for some p ∈ Θl
�(a+ b). By

combining the two sequences of transitions, we get σ(t)
a−→
k+n

> p. By the hypothesis we have t↔∗u, which in

particular implies t↔> u and thus σ(t)↔> σ(u). As ↔> is a bisimulation, we can infer that σ(u)
a−→
k+n

> p′

for some process p′ with p↔> p
′. As n is larger than the depth of u, by Proposition 2 there exists a process

term u′, a string w with strings s1, . . . , sh ∈ {a}∗, a variable y, a natural number m and a process q such

that u
s1...sh−−−−−→>,w u

′, |s1 . . . sh| = j < n, u′
xs−−→> Θm

� (yd), σ(y) −→k+n−j
> q and p′ ∈ Θm

� (q). Therefore: (i) by
k+ n− j > 0; (ii) by the choice of > (which gives that the only possible transition enabled for Θl

�(a+ b) is
a b-labeled move); (iii) by the choice of σ; (iv) by p↔> p

′ with p ∈ Θl
�(a+ b), p′ ∈ Θm

� (q); we can conclude
that y = x, j = k and q = a + b. Moreover, from item (iv) and the choice of >, we obtain that l = 0 iff
m = 0.

5. Making order-insensitive bisimilarity coinductive: uniform determinacy

As outlined in Section 2, ↔∗ cannot be defined coinductively, contrary to other bisimulation relations.
However, in this section we identify a class of processes for which the coinductive reasoning on ↔∗ can be
at least partially recovered, and which will be useful later on.

Definition 5 (Uniform determinacy). Let p be a process. We say that p is uniformly determinate if
|init(p)| = 1, and for all processes p1 and p2 such that p −→ p1 and p −→ p2, we have norm (p1) = norm (p2) = 1
and p1↔∗ p2. Then, for each k ∈ N, we say that p is uniformly k-determinate if
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� |init(p)| = 1,

� whenever p −→h q for some h ≤ k then |init(q)| = 1, and

� whenever p −→k p′ then p′ is uniformly determinate.

We remark that uniform determinacy and uniform k-determinacy are defined in terms of the empty
priority order.

Summarizing, a process is uniformly k-determinate if whenever it takes k steps, it ends up in a process that
only has one available action, and in which all immediate successors have norm 1 and are order-insensitive
bisimilar.

Example 5. Consider processes

p1 = a · b+ a p2 = a · p1 + a p = a · p2

q = a · b+ a · a .

First of all, we notice that both p1 and p2 have norm 1, due to the branches with the action constant a.
Moreover, they are both uniformly determinate. In fact, p1 can perform only one transition to process b,
which has norm 1 and it is clearly order-insensitive bisimilar to itself. Similarly, the only available transition
for p2 is p2

a−→ p1, which, as previously noticed, has norm 1. We remark that the a action constants in
p1 and p2 do not trigger any transition for the two processes, but they cause the predicates p1

a−→
√√

and

p2
a−→
√√

to hold.
As process p can perform only one a-move to p2, we can directly infer that p is uniformly determinate.

Notice that process p does not have norm 1, but such a constraint has to be satisfied only by its derivatives.
Moreover, from our observations on p1 and p2, we obtain that p is also uniformly 1-determinate and uniformly
2-determinate.

Consider now process q. We have that q is not uniformly determinate since q
a−→ b and q

a−→ a are
both derivable and, clearly, b 6↔∗ a. However, q is uniformly 1-determinate, since both b and a are trivially
uniformly determinate. �

The notion of uniform k-determinacy is preserved by order-insensitive bisimilarity.

Lemma 7. If p↔∗ q and p is uniformly k-determinate for all 1 ≤ k < depth (p), then so is q.

Proof. The proof proceeds by induction on k. Notice that p↔∗ q implies p↔ q.

� Base case: k = 1. Assume, towards a contradiction, that q is not uniformly 1-determinate. This means
that either |init(q)| > 1 or there exist q1 and q2 such that q −→ q1 and q −→ q2 but q1 6↔? q2, or
norm (q1) 6= 1, or norm (q2) 6= 1.

If |init(q)| > 1, then there are a, b ∈ A with a 6= b such that q
a−→ qa and q

b−→ qb for some processes qa

and qb. Since p↔ q, there must exist pa and pb such that p
a−→ pa and p

b−→ pb, but this contradicts
|init(p)| = 1.

If q1 6↔∗ q2, then q1 6↔> q2 for some priority order >. Since we already know that |init(q)| = 1, q −→ q1

and q −→ q2 implies q −→> q1 and q −→> q2. Hence there exist processes p1 and p2 such that p −→> p1

and p −→> p2 with p1↔> q1 and p2↔> q2. However, since p is uniformly 1-determinate, we know that
p1↔> p2, so q1↔> q2, which is a contradiction.

If norm (q1) 6= 1, then we know from p↔ q and q −→ q1 that p −→ p1 for some process p1 with p1↔ q1.
But this implies norm (q1) = norm (p1) = 1, which is a contradiction. The argument for norm (q2) 6= 1
is similar.

� Inductive step: k > 1. Assume that q is uniformly k′-determinate for all k′ < k. We now prove that q
is also uniformly k-determinate. Assume towards a contradiction that q is not k-determinate. Then
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there must exist some q′ such that q −→k q′ and either |init(q′)| > 1 or there are q1 and q2 such that
q′ −→ q1 and q′ −→ q2, but either q1 6↔∗ q2, norm (q1) 6= 1, or norm (q2) 6= 1.

The cases of |init(q′)| > 1, norm (q1) 6= 1, and norm (q2) 6= 1 are essentially the same as for the base
case, except that one first gets a process p′ such that p −→k p′, and then reasons as before on p′.

We now consider the case of q1 6↔∗ q2. This implies that q1 6↔> q2 for some priority order >. Since
p↔∗ q, we also get p↔> q, and since q is uniformly k′-determinate for every k′ < k, q −→k q′ implies
q −→k

> q
′. (Recall that all the processes reached in the sequence of k′-steps can perform only transitions

with the same label). Therefore there exists a process p′ such that p −→k
> p
′ and p′ ↔> q

′. Since we
already know that |init(q′)| = 1, q′ −→ q1 and q′ −→ q2 implies q′ −→> q1 and q′ −→> q2. Hence there
exist p1 and p2 such that p′ −→> p1 and p′ −→> p2 as well as p1↔> q1 and p2↔> q2. However, since p is
uniformly k-determinate, we know that p1↔>p2, so we get q1↔>q2, which contradicts our assumption.

The next proposition shows that if p and q are order-insensitive bisimilar as well as uniformly k-
determinate for all k less than some n, then every sequence of n transitions that p can do can be matched
by q such that p and q end up in processes that are again order-insensitive bisimilar.

Proposition 3. Let p and q be two processes such that p↔∗ q and there is an n ∈ N such that p and q are
uniformly k-determinate for all k < n. Suppose that p −→n p′ for some p′. Then there is a process q′ such
that q −→n q′ and p′↔∗ q′.

Proof. We recall that in [3] a process p is said to be determinate if |init(p) | ≤ 1 ([3] considers the language
BCCSP which includes the idle process that cannot perform any action), and for all processes p1, p2 such
that p −→ p1 and p −→ p2 it holds that p1↔∗ p2. Then p is said to be determinate at depth k if all processes p′

such that p −→k p′ are determinate. Since our notion of uniformly k-determinacy implies that of determinacy
at depth k in [3], the proof of this proposition directly follows from Lemma 18 of [3].

6. The special property: uniform (n,Θ)-dependency

In this section we formalize the uniform (n,Θ)-dependency property, on which our negative result is
built. As previously outlined, this is based on the notion of Θ-dependent process from [3].

Definition 6 (Θ-dependent process, [3]). A process p is Θ-dependent if there exist priority orders >1 and
>2 such that init>1

(p) 6= init>2
(p).

Intuitively, a process is Θ-dependent if its possible behaviour depends on the choice of priority order.
For example, Θ(a + b) is Θ-dependent, since we can find a priority order that only allows it to make an
a-transition, and another priority order that only allows it to make a b-transition. On the other hand, Θ(a)
is not Θ-dependent, since no matter what priority order we choose, it can only do a a-transition.

Moreover, we will make use of the following technical result from [3].

Lemma 8 ([3, Lemma 14]). If p↔∗ q and p is Θ-dependent, then so is q.

Uniform (n,Θ)-dependency is an extension of Θ-dependency from [3], in that it requires first that it is
possible to take a sequence of n transitions and end up in a process that is Θ-dependent, and furthermore
it requires that at each step along the way, the process has a norm of 1.

Definition 7. A process p is uniformly (n,Θ)-dependent if there are processes p1, . . . , pn such that p =
p0 → p1 → · · · → pn, the process pn is Θ-dependent, and for all 0 ≤ k < n we have norm (pk) = 1.

The following proposition tells us that (n,Θ)-dependency is preserved by closed instantiations of sound
equations whose depth is smaller than n and that satisfy some determinacy constraints.
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Proposition 4. Let σ be a closed substitution and let t and u be process terms such that t ↔∗ u and
initω(t) = {a}. Assume a natural number n ∈ N such that n > max{depth (t) ,depth (u)} and σ(t) is
uniformly k-determinate for all 1 ≤ k ≤ n− 1. If σ(t) is uniformly (n,Θ)-dependent, then so is σ(u).

Proof. We start by noticing that t↔∗ u implies σ(t)↔∗ σ(u) and thus, by Lemma7, we infer that σ(u) is
uniformly k-determinate for all 1 ≤ k ≤ n−1. Next, since σ(t) is uniformly (n,Θ)-dependent, by Definition 5
there are processes p0, . . . , pn such that σ(t) = p0 −→ . . . −→ pn, norm (pi) = 1 for all i = 0, . . . , n− 1, and pn
is Θ-dependent. Since, moreover, we have depth (t) < n, by Proposition 2 there are a process term t′ and a

string w such that t
s1...sh−−−−−→w t

′ with |s1 . . . sh| = j and there are a variable x, an l ∈ N and a process q such

that t′
xs−−→ Θl

�(xd), σ(x) −→n−j q, and pn ∈ Θl
�(q). In particular, notice that by the uniform k-determinacy

of σ(t), for all k = 1, . . . , n − 1, we obtain that |init(σ(t′)) | = 1. As this set of initials is constructed with
respect to the empty priority order we can also infer the following:

� |init(σ(x)) | = 1,

� |init(qi) | = 1 for all qi, with i = 1, . . . , n− j − 1, such that σ(x) −→ q1 −→ . . . −→ qn−j−1 −→ q, and

� any action performed in the sequence σ(x) −→ n−jq is locally maximal with respect to the empty
priority order.

Notice that, by Lemma 6, t′
xs−−→ Θl

�(xd) is the same as x /l t
′. Since, moreover, pn is Θ-dependent, it must

be the case that |A| > 1. We can then apply Theorem 2, thus obtaining that there are a process term u′

and an m ∈ N such that u −→j u′ and x /m u
′. Using again Lemma 6, x /m u

′ is the same as u′
xs−−→ Θm

� (xd).
As above, the uniform k-determinacy of σ(u), for all k = 1, . . . , n− 1, guarantees that |init(σ(u′)) | = 1 and

thus that σ(x) can perform its (locally maximal) action. Thus, from σ(x)
a−→
n−j

q and u′
xs−−→ Θm

� (xd),

Lemma 5 implies σ(u′)
a−→
n−j

Θm
� (q). Hence we can infer that there are processes q0, . . . , qn such that

σ(u) = q0 −→ . . . −→ qn with qn ∈ Θm
� (q). According to Theorem 2, we can distinguish two cases:

� Case l > 0. Then we can infer that m > 0, and thus qn is clearly Θ-dependent.

� Case l = 0. Then we have that pn = q and from pn being Θ-dependent we can infer that q is
Θ-dependent. As l = 0 implies m = 0, we get that qn = q and thus qn is Θ-dependent because q is.

To conclude, we need to show that norm (qi) = 1 for each i = 0, . . . , n − 1. First of all we notice
that, since σ(t)↔∗ σ(u) and norm (σ(t)) = 1, then norm (σ(u)) = norm (q0) = 1. Moreover, since σ(u) is
uniformly k-determinate for all 1 ≤ k < n, we get that norm (qi) = 1 for all i = 1, . . . , n − 1 is guaranteed
by Definition 5. We can therefore conclude that σ(u) is uniformly (n,Θ)-dependent.

7. Order-insensitive bisimilarity is not finitely based over BPAΘ

This section is devoted to our main result, namely that order-insensitive bisimilarity has no finite ground-
complete axiomatisation in the setting of BPAΘ.

In Equation (1) in Section 3, we presented a family of infinitely many sound equations which cannot be
derived from any finite axiom system which is sound modulo order-insensitive bisimilarity, which we now
proceed to recall. We make use of the following processes, which are defined for each n ∈ N as

Pn = An(a) +An(b) +An(a+ b),

where A0(p) = p and An(p) = a · An−1(p) + a. Process Pn must decide at the top level whether after n
steps it will end up in a, b, or a+ b. After this choice, it can take up to n a-transitions, and at each step it
can choose whether to terminate or to continue. We stress that the possibility of termination at each step
is crucial, as it implies that An(·) cannot be written just with sequential composition modulo bisimilarity.

The family of equations that we consider is then

en : Pn +An(Θ(a+ b)) ≈ Pn (n ≥ 0) .
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We remark that the processes on the left-hand side of each equation en are uniformly (n,Θ)-dependent,
whereas those on the right-hand side do not enjoy this property. In detail, for all n ∈ N, by construction
there is no occurrence of Θ in Pn nor in its derivatives, so that Pn cannot have any Θ-dependent successor.
On the other hand, we have Pn +An(Θ(a+ b))

a−→ An−1(Θ(a+ b))
a−→ . . .

a−→ A0(Θ(a+ b)) = Θ(a+ b) with
Θ(a + b) a Θ-dependent process and, by construction, for each i = 1, . . . , n the process Ai(Θ(a + b)) has
norm 1.

To proceed to the proof of Theorem 1 we need to show, in the first place, that all the equations in the
family {en}n∈N are sound. To this end we introduce the final ingredient that we need for our main result,
namely the notion of summand of a process.

Definition 8 (Summand, [3]). We say that p is a summand of q, denoted by p v∗ q, if there exists a process
r such that p+ r↔∗ q.

Proposition 5. For every n ∈ N, the equation Pn +An(Θ(a+ b)) ≈ Pn is sound.

Proof. It is enough to prove that An(Θ(a + b)) v∗ Pn for all n ∈ N. So, let n ∈ N and > be an arbitrary
priority order. Then:

� If a > b, then An(Θ(a+ b))↔> An(a).

� If b > a, then An(Θ(a+ b))↔> An(b).

� If a and b are unordered in >, then An(Θ(a+ b))↔> An(a+ b).

Hence, we can conclude that An(Θ(a+ b)) + Pn↔> Pn for all priority orders > and naturals n ∈ N, which
implies An(Θ(a+ b)) v∗ Pn for all n ∈ N

Interestingly, any process p such that p v∗ Pn must be of a specific form that inherits many of the
features of Pn. In particular, such a process must be k-determinate for all k less than n.

Lemma 9. Let p be a process and assume p v∗ Pn for some n ∈ N. Then p is uniformly k-determinate for
all 1 ≤ k < n.

Proof. We first prove that initk(p) = {a} for 0 ≤ k < n. We recall that since we are considering BPAΘ

with constants, and without the empty process and deadlock, for all closed process terms p it holds that
init>(p) 6= ∅ for all priority orders >. As p v∗ Pn, which means that p+ r↔∗ Pn for some r, we have that
p+ r↔ Pn. By Lemma 1, we infer initk(p+ r) = initk(Pn) = {a}. Since, moreover, initk(p) ⊆ initk(p+ r),
we get initk(p) = {a}.

We now proceed by contradiction. Let 1 ≤ k < n be the least number such that p is not uniformly
k-determinate. Then there exist processes p′, p1, and p2 such that p −→k p′, p′ −→ p1, and p′ −→ p2, and
p1 6↔∗ p2, or norm (p1) 6= 1, or norm (p2) 6= 1.

If norm (p1) 6= 1, then p −→k p′ and p′ −→ p1, so there exists P ′n and P ′′n such that Pn −→k P ′n and P ′n −→ P ′′n
with p1 ↔ P ′′n . But then norm (p1) = norm (P ′′n ) = 1, which is a contradiction. A similar argument holds
when norm (p2) 6= 1.

If p1 6↔∗ p2, then p1 6↔> p2 for some specific priority order >. Notice that since |initi(p) | = {a} for all
0 ≤ i < n, we get that p −→k p′, p′ −→ p1, and p′ −→ p2 implies p −→k

> p
′, p′ −→> p1, and p′ −→> p2. Since

p + r↔> Pn for some r, there exist P ′n, P ′′n , and P ′′′n such that Pn −→k
> P ′n, P ′n −→> P ′′n , and P ′n −→> P ′′′n

with p1↔> P
′′
n and p2↔> P

′′
n . Since norm (p1) = 1 = norm (p2), we also get norm (P ′′n ) = 1 = norm (P ′′′n ).

However, we see from the definition of Pn that P ′n has a unique successor with norm 1. Hence it follows
that P ′′n = P ′′′n , so p1↔> P

′′
n = P ′′′n ↔> p2, which contradicts p1 6↔> p2.

We are now ready to present our main theorem, which states that for n large enough, if p and q are
summands of Pn that can be proved equivalent from a finite set of sound equations, and p is uniformly
(n,Θ)-dependent, then q must also be uniformly (n,Θ)-dependent.
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Theorem 3. Assume that A contains at least two distinct actions. Let E be a set of sound process equations
of depth less than n, and let p and q be closed processes such that p, q v∗ Pn and E ` p ≈ q. If p is uniformly
(n,Θ)-dependent, then q is also uniformly (n,Θ)-dependent.

Proof. As briefly discussed in Section 2, without loss of generality, we can disregard the symmetry rule in
our inductive proof below by assuming that u ≈ t ∈ E whenever t ≈ u ∈ E . Furthermore, we can assume
that all applications of the substitution rule in derivations have a process equation from E as premise. This
means that we only need to consider a new rule stating that all substitution instances of process equations
in E are derivable, rather than considering the axiom rule — which states that all process equations in E
are derivable —, and the substitution rule — which states that if a process equation is derivable, then so
are all its substitution instances — separately.

We will now present the inductive argument over the number of steps in a proof of an equation p ≈ q
from E . We proceed by a case analysis on the last rule applied to obtain E ` p ≈ q.

Case 1: reflexivity and transitivity. In these cases, the proof follows immediately or by the in-
duction hypothesis in a straightforward manner.

Case 2: variable substitution. Assume that E ` p ≈ q is the result of a closed substitution in-
stance of a process equation t ≈ u ∈ E , namely there exists a substitution σ such that σ(t) = p and
σ(u) = q. Since t ≈ u ∈ E , we have that depth (t) ,depth (u) < n. Moreover, from p, q v∗ Pn it fol-
lows that initω(p) = initω(q) = {a} and that, by Lemma 9, p and q are uniformly k-determinate for all
k ∈ {1, . . . n− 1}. Hence by Proposition 4, we can conclude that if p is uniformly (n,Θ)-dependent, then so
is q.

Case 3: congruence rule. We can distinguish three cases:

� The last rule applied in E ` p ≈ q is the congruence rule for the nondeterministic choice +. Then
there exist closed process terms p1, p2, q1 and q2 such that p = p1 + p2, q = q1 + q2, E ` p1 ≈ q1 and
E ` p2 ≈ q2 by shorter proofs. Since p is uniformly (n,Θ)-dependent, there must exist a process p′

such that p −→n p′, where p′ is Θ-dependent and every process along the transitions from p to p′ has
norm 1.

We can distinguish four possible subcases, regarding how this property is derived:

1. p1 is uniformly (n,Θ)-dependent.

2. p2 is uniformly (n,Θ)-dependent.

3. norm (p2) = 1, norm (p1) 6= 1, and there are processes p1
1, . . . , p

n
1 such that p1 −→ p1

1 −→ . . . −→
pn1 = p′ and pn1 is Θ-dependent.

4. norm (p1) = 1, norm (p2) 6= 1, and there are processes p1
2, . . . , p

n
2 such that p2 −→ p1

2 −→ . . . −→
pn2 = p′ and pn2 is Θ-dependent.

In cases (1) and (2) we can immediately apply the induction hypothesis obtaining, respectively, that
either q1 or q2 is uniformly (n,Θ)-dependent, and thus that q is uniformly (n,Θ)-dependent as well.

The cases (3) and (4) require more attention. We detail only the proof for case (3), since the one for
case (4) is symmetric. Firstly, we notice that since p, q v∗ Pn then by Lemma 9 both p and q are
uniformly k-determinate for all k ∈ {1, . . . , n− 1}. This implies that p1 is uniformly k-determinate for
the same values of k. Moreover, as E ` p1 ≈ q1 gives p1↔∗ q1 and depth (p1) = n, by Lemma 7 we
obtain that also q1 is uniformly k-determinate for k ∈ {1, . . . , n− 1}. Then, by Proposition 3 we can
infer that there is a process qn1 such that q1 −→n qn1 and qn1 ↔∗ pn1 , which, by Lemma 8, implies that
qn1 is Θ-dependent. Furthermore, uniform k-determinacy ensures that all the processes q1

1 , . . . , q
n−1
1 in

the sequence q1 −→ q1
1 −→ . . . −→ qn−1

1 −→ qn1 have norm 1. Finally, we notice that since norm (p2) = 1
and E ` p2 ≈ q2 implies p2↔∗ q2, we can infer that norm (q2) = 1. By combining the properties of q1

and q2, we can conclude that q = q1 + q2 is uniformly (n,Θ)-dependent.
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x
a−→>

√√
∀ b > a y

b−→>6
x� y

a−→>

√√
x

a−→> x
′ ∀ b > a y

b−→>6
x� y

a−→> x
′

U1 a� b ≈ a if not b > a U4 (x · y) � z ≈ (x� z) · y
U2 x� (y · z) ≈ x� y U5 (x+ y) � z ≈ x� z + y � z
U3 x� (y + z) ≈ (x� y) � z PU Θ(x+ y) ≈ Θ(x) � y + Θ(y) � x

Table 5: Operational semantics and some axioms of the unless operator.

� The last rule applied in E ` p ≈ q is the congruence rule for the sequential composition. This means
that p = p1 · p2, q = q1 · q2, E ` p1 ≈ q1 and E ` p2 ≈ q2 by shorter proofs. This case is vacuous, as
norm (p) ≥ 2 and therefore p cannot be uniformly (n,Θ)-dependent.

� The last rule applied in E ` p ≈ q is the congruence rule for the priority operator Θ. Then there exist
p′ and q′ such that p = Θ(p′), q = Θ(q′), and E ` p′ ≈ q′ by a shorter proof. Since p is uniformly
(n,Θ)-dependent, there exists a sequence of processes p = Θ(p′) −→ Θ(p1) −→ · · · −→ Θ(pn−1) −→ Θ(pn)
such that norm (Θ(p1)) = . . . norm (Θ(pn−1)) = 1 and Θ(pn) is Θ-dependent. Note that, since Θ(pn) is
Θ-dependent, |init(pn) | ≥ 2. Moreover, from the operational rules for Θ, p′ −→ p1 −→ · · · −→ pn−1 −→ pn
and from the definition of norm, norm (p1) = · · · = norm (pn) = 1. From E ` p′ ≈ q′, we derive
that p′ ↔∗ q′. Hence, p′ ↔ q′ holds and therefore we get a sequence q′ −→ q1 −→ · · · −→ qn such that
pn↔ qn, which implies that |init(qn) | ≥ 2. Thus, we infer q = Θ(q′) −→ Θ(q1) −→ · · · −→ Θ(qn) and,
since |init(qn) | ≥ 2, Θ(qn) is Θ-dependent. It remains to show that norm (Θ(q′)) = norm (Θ(qi)) = 1
for each i ∈ {1, . . . , n− 1}. As q v∗ Pn, by Lemma 9 we gather that q is uniformly k-determinate for
all 1 ≤ k < n, from which it follows that norm (Θ(qi)) = 1 for all i ∈ {1, . . . , n− 1}. Since, moreover,
p↔∗ q and norm (p) = 1, we get norm (q) = 1 and we conclude that q is (n,Θ)-dependent.

As the left-hand side of the equations in (1) is uniformly (n,Θ)-dependent while the right-hand side is
not, from Theorem 3 we can directly infer that for each n, the nth instance of the family of equations in (1)
cannot be proved using the finite collection of all sound equations whose depth is smaller than n.

We can therefore conclude that Theorem 1 (presented in Section 3) holds.

8. On the use of auxiliary operators

In its first appearance, in [8], the priority operator was defined in terms of the simpler binary operator
unless, denoted by �. Informally, � allows us to capture the priority order among actions, as a� b behaves
like a unless b has higher priority than a. In Table 5 we report the SOS rules defining the behavior of the
unless operator, together with some valid axioms for it. In particular, axiom (PU) allows us to rewrite the
behaviour of the priority operator in terms of that of unless.

Example 6. Consider process p = a ·(b�c+c�b). If b > c, then only the summand b�c of (b�c+c�b) can
make a transition, thus giving p↔> a · b. Similarly, if c > b then p↔> a · c. In case b and c are incomparable
with respect to >, then b� c+ c� b↔> b+ c, so that p↔> a · (b+ c).

Consider now processes q1 = a� (b · c) and q2 = (a · b) � c. The unless operator compares only the initial
actions of its arguments (cf. axioms (U2) and (U4) in Table 5). Hence in q1 the priority order between a and
c plays no role in determining whether q1 will perform the a-move or not. At the same time, if c has higher
priority than a, in q2 also the execution of b is prevented disregarding the ordering of b and c. �
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One can prove, in a similar fashion to [8], that, provided the set of actions is finite, for a chosen priority
order >, the bisimulation equivalence↔> affords a finite axiomatisation over BPAΘ,�, namely BPA enriched
with both Θ and �. Hence a natural question that arises is whether we can regain a finite axiomatisation
over BPAΘ,� also for order-insensitive bisimilarity. We devote this section to proving that a negative answer
applies and thus that the following theorem holds:

Theorem 4. If the set of actions A contains at least two distinct actions, then the language BPAΘ,� modulo
order-insensitive bisimilarity is not finitely based.

Since the technical development of the negative result for BPAΘ (Theorem 1) would apply in major part
unchanged in the proof of Theorem 4, we actually present only an informal discussion of this result.

Consider the family of equations in (1), that we used to prove the negative result for the priority operator.
One can prove, by using axioms (PU) in Table 5 and (P5) in Table 3 together with congruence closure, that

An(Θ(a+ b)) ≈ An(a� b+ b� a)

and thus that the family of equations

e′n : Pn +An(a� b+ b� a) ≈ Pn (n ≥ 0) (2)

is sound modulo order-insensitive bisimilarity. However, precisely because we are considering the order-
insensitive relation, one can notice that it is not possible to eliminate the occurrences of the unless operator
from the left-hand side of the equations in (2). In fact, as no priority order over actions has been chosen,
it is not possible to establish the relation between actions a and b (that we recall are assumed to be
distinct) and thus whether � will allow for their execution or not. More formally, we notice that the axiom
(U1) in Table 5 is not sound modulo order-insensitive bisimilarity (with the only exception of the trivial
case in which the actions in the two sides of � coincide). Therefore, the same reasoning applied to prove
Theorem 3, and thus Theorem 1, can be adapted in a straightforward manner to obtain a proof for Theorem 4.
Intuitively, we simply need to substitute the notions of Θ-dependency and uniform (n,Θ)-dependency with
the corresponding notions for the unless operator.

9. Complexity of order-insensitive bisimilarity checking

In this section we investigate some algorithms, and their complexity, for checking order-insensitive bisim-
ilarity of (loop-free) finite labelled transition systems. It is known that bisimilarity over such systems is P-
complete [9], and, moreover, using the Paige-Tarjan algorithm [25] each↔> can be checked in O(mt logms),
where mt is the number of transitions, and ms is the number of states. A naive algorithm for↔∗ would then

check↔> for all the possible partial orders > over A. Assuming that |A| = k > 0, there are 2k2/4+3k/4+O(log k)

possible partial orders (see [20] for the result on the number of posets over sets with k elements). Clearly,
from these results we can obtain an upper bound on the complexity of ↔∗.

Theorem 5. The problem of deciding whether two processes are order-insensitive bisimilar is in coNP and

can be solved in time 2k2/4+3k/4+O(log k) ·O(n2) where k is the number of actions and n is the sum of the sizes
of the two processes.

Proof. Let |p| denote the size of process p. We first argue that the complexity of the naive algorithm for
checking whether two closed BPAΘ terms p and q are related by order-insensitive bisimilarity is

2
k2/4+3k/4+O(log k) ·O(n2) ,

where n = |p|+ |q| is the sum of the sizes of the two processes. To this end, observe that, for each irreflexive
partial order > over A, the algorithm checks whether p↔> q holds, which can be done by verifying that the
loop-free LTSs with transition relation −→> associated with p and q are bisimilar. The latter check can be
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done in O(mt logms) using the Paige-Tarjan algorithm. It is not hard to verify that the number ms of states
and the number mt of transitions in the LTS associated with a closed BPAΘ term are linear in the size of
the term. Moreover such an LTS can be constructed in time O(|p|2) from a term p and a priority order >.
So checking whether p and q are related by ↔> can be done in time O(n2 + n log n) = O(n2), where n is

the sum of the sizes of p and q. It follows that the naive algorithm has complexity 2k2/4+3k/4+O(log k) ·O(n2).
We now argue that order-insensitive bisimilarity checking is in coNP. Given two terms p and q that

are not order-insensitive bisimilar, one can nondeterministically guess an irreflexive partial order > that
separates them, generate the loop-free LTSs with transition relation −→> associated with p and q (which can
be done in quadratic time), and then verify the correctness of this guess with the Paige-Tarjan algorithm
that checks for bisimilarity of the LTSs. Guessing an irreflexive partial over k elements can be done by:

� Guessing an irreflexive relation in time O(k2);

� Computing its transitive closure in cubic time;

� Checking whether the resulting relation is acyclic in time that is linear in the size of the resulting
directed graph.

The coNP bound follows from the above mentioned observations.

Remark 1. If A is a singleton, the complexity bounds in Theorem 5 can be sharpened. Indeed, in that
case, ↔∗ coincides with bisimilarity and checking whether two loop-free LTSs over a singleton action set are
bisimilar is P-complete [9].

The main contributor to the complexity of the above-mentioned naive algorithm however is the number
of bisimilarity checks that has to be performed. Indeed, when verifying the order-insensitive bisimilarity of
two BPAΘ terms, the only upper bound we can impose on the number of actions appearing in the terms is
linear in the size of the terms in the worst case. Therefore the number of possible partial orders that have
to be considered is exponential in size of the input terms. It might be possible to improve on the number of
the partial orders to consider if we could exclude a priori the checking of some significant number of partial
orders. For instance, one could hope that p↔>0

q does not need to be checked if p↔>1
q for some >1 that

extends >0. We dedicate the remainder of this section to showing that this is impossible in general.
Assume that A is finite and |A| = k > 0. Let >0 be an irreflexive partial order over A. Our goal is to

construct two BPAΘ terms p and q with the following properties:

(a) p 6↔>0
q, and

(b) p↔> q for each irreflexive partial order > 6= >0.

We introduce next some constructions and notation that will be useful in what follows.
First of all, for each non-empty S ⊆ A, we define the term v(S) thus:

v(S) =

{
a if S = {a} for some a ∈ A∑
a∈S a.v(S \ {a}) otherwise.

Intuitively, v(S) describes a nondeterministic process that can perform all permutations of the actions in S.
Given an irreflexive partial order > over A, we let p> denote a closed BPAΘ term such that p> contains

no occurrences of Θ and
p>↔> Θ(v(A)). (3)

Example 7. Assume that A = {a, b} and let >0 = ∅. There are only two other irreflexive partial orders
over {a, b}, namely >1 = {(a, b)} and >2 = {(b, a)}. Now consider the term

v = v({a, b}) = ab+ ba .

It is easy to see that
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� Θ(v)↔>0
v,

� Θ(v)↔>1
ab = p>1

, and

� Θ(v)↔>2
ba = p>2

.

Consider now processes p = a.p>1
+a.p>2

and q = p+a.Θ(a.b+b.a). From the above, it follows immediately
that p↔>1

q and p↔>2
q. However, we have that p 6↔>0

q. Indeed, Θ(v)↔>0
v and thus q can do an a action

and become a.b+ b.a while p cannot match that transition. �

As highlighted by the above example, the traces of the term Θ(v(A)) with respect to −→> are all the
linearisations of the partial order >. A classic result in order theory states that a partial order is uniquely
determined by its linear extension [28]. This is the key to the following lemma.

Lemma 10. Two closed process terms p>1 and p>2 defined as in Equation (3) above have the same traces
if and only if >1=>2.

Using the above lemma, we can now prove that:

Theorem 6. Assume that A is finite and contains at least two distinct actions. Let >0 be an irreflexive
partial order over A. Then there exist closed BPAΘ terms p and q such that, for each irreflexive partial
order > over A, p↔> q if and only if > 6= >0.

Proof. We need to exhibit two closed BPAΘ terms satisfying the above-mentioned properties (a) and (b)
with respect to the chosen partial order >0. To this end, we choose an action a ∈ A and define:

p =
∑

>∈PO(A), > 6=>0

a.p> and q = p+ aΘ(v(A)) (4)

where PO(A) denotes the set of all irreflexive partial orders on A.

� p and q satisfy property (b).

We need to show that p↔> q for each >∈ PO(A) such that > 6=>0. This follows by construction.
In fact, for each > 6=>0, both processes contain a summand bisimilar to the closed term a.p> and
moreover a.Θ(v(A))↔> a.p>.

� p and q satisfy property (a).

We need to show that p 6↔>0
q. To see this, observe that q

a−→>0
Θ(v(A))↔>0

p>0
. On the other hand,

if p
a−→>0

p′ then p′ = p> ↔> Θ(v(A)) for some partial order > 6=>0. By Lemma 10, p> does not
have the same traces as p>0

, and thus p>0
6↔>0

p>. This means that p cannot match the transition

q
a−→>0

Θ(v(A)) up to ↔>0
and thus p 6↔>0

q.

10. Conclusions

In this work we have studied the finite axiomatisability of the equational theory of order-insensitive
bisimilarity over the language BPA enriched with the priority operator Θ. As previous similar work sug-
gested, also in this setting, the collection of sound, closed equations is not finitely based in the presence of at
least two actions, despite the fact that the sequential composition operator allows one to write more complex
axioms than action prefixing. We proved this negative result using an infinite family of closed equations
suggested in [3] and showing that no set of sound equations of bounded depth can derive them all.

Finding an infinite (ground-)complete axiomatisation of order-insensitive bisimilarity is a natural avenue
for future research. It would also be interesting to see whether we can obtain a lower bound on the complexity
of order-insensitive bisimilarity checking. Above we discussed various upper bounds for its complexity that
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all suggest some type of computational hardness and since we have that the problem is in coNP it would be
a natural follow-up to prove coNP-hardness. At the time of writing, this hardness result is not obvious to us.
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Appendix A. Proofs of results in Section 4

Appendix A.1. Proof of Lemma 3

Proof of Lemma 3.

1. We proceed by induction over the derivation of the predicate t
x−→>

√√
.

� Base case: t = x and t
x−→>

√√
is derived by rule (a2) in Table 4. Hence σ(t)

a−→>

√√
directly

follows by σ(x)
a−→>

√√
.

� Inductive step: t = t1 + t2 and t
x−→>

√√
is derived by either rule (a8) in Table 4, and thus by

t1
x−→>

√√
, or its symmetric version on t2. Assume, without loss of generality, that rule (a8) in

Table 4 was applied. Then by induction t1
x−→>

√√
and σ(x)

a−→>

√√
imply σ(t1)

a−→>

√√
. Hence,

the premise of rule (r4) in Table 1 is satisfied and we can infer that σ(t)
a−→>

√√
.

� Inductive step: t = Θ(u) and t
x−→>

√√
is derived by rule (a11) in Table 4, and thus we have that

u
x−→>

√√
. By induction u

x−→>

√√
and σ(x)

a−→>

√√
imply σ(u)

a−→>

√√
. Since, per assumption,

action a has maximal priority with respect to >, the premises of rule (r8) in Table 1 are satisfied

and we can infer that σ(t)
a−→>

√√
.

2. We proceed by induction over the derivation of the auxiliary transition t
x−→> t

′.

� Base case: t = t1 · t2 and t
x−→> t

′ is derived by rule (a5) in Table 4, namely t1
x−→>

√√
and t′ = t2.

By Lemma 3.1 we have that t1
x−→>

√√
and σ(x)

a−→>

√√
imply that σ(t1)

a−→>

√√
. Hence, the

premise of rule (r2) in Table 1 is satisfied and we can infer that σ(t)
a−→> σ(t2).

� Inductive step: t = t1 · t2 and t
x−→> t

′ is derived by rule (a4) in Table 4, namely t1
x−→> t

′
1 and

t′ = t′1 · t2. By induction we have that t1
x−→> t

′
1 and σ(x)

a−→>

√√
imply that σ(t1)

a−→> σ(t′1).

Hence, the premise of rule (r3) in Table 1 is satisfied and we can infer that σ(t)
a−→> σ(t′1 · t2).

� Inductive step: t = t1 + t2 and t
x−→> t

′ is derived either by rule (a7) in Table 4, namely t1
x−→> t

′
1

and t′ = t′1, or by its symmetric version for t2. Assume, without loss of generality, that rule (a7)

was applied. By induction we have that t1
x−→> t

′
1 and σ(x)

a−→>

√√
imply that σ(t1)

a−→> σ(t′1).

Hence, the premise of rule (r6) in Table 1 is satisfied and we can infer that σ(t)
a−→> σ(t′1).

� Inductive step: t = Θ(u) and t
x−→> t

′ is derived by rule (a10) in Table 4, namely t1
x−→> t

′
1 and

t′ = Θ(t′1). By induction we have that t1
x−→> t

′
1 and σ(x)

a−→>

√√
imply that σ(t1)

a−→> σ(t′1).
Since by the hypothesis action a has maximal priority with respect to >, the premise of rule (r9)

in Table 1 is satisfied and we can infer that σ(t)
a−→> σ(Θ(t′1)).

3. We proceed by induction over the derivation of the auxiliary transition t
xs−−→> c.

� Base case: t = x and t
xs−−→> c is derived by rule (a1) in Table 4, namely c = xd. Hence the proof

follows directly by σ(x)
a−→> p.

� Inductive step: t = t1 · t2 and t
xs−−→> c is derived by rule (a3) in Table 4, namely t1

xs−−→> c′

and c = c′ · t2. By induction we have that t1
xs−−→> c

′ and σ(x)
a−→> p imply σ(t1)

a−→> p
′ for

p′ = σ[xd 7→ p](c′). Hence, by rule (r3) in Table 1 we can infer that σ(t)
a−→> p′ · σ(t2), with

p′ · σ(t2) = σ[xd 7→ p](c′ · t2).

� Inductive step: t = t1 +t2 and t
xs−−→> c is derived either by rule (a6) in Table 4, namely t1

xs−−→> c,
or by its symmetric version for t2. Assume, without loss of generality, that (a6) was applied. By

induction we have that t1
xs−−→> c and σ(x)

a−→> p imply σ(t1)
a−→> σ[xd 7→ p](c). Hence, by rule

(r6) in Table 1 we can infer that σ(t)
a−→> σ[xd 7→ p](c).
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� Inductive step: t = Θ(u) and t
xs−−→> Θ(c) is derived by rule (a9) in Table 4, namely u

xs−−→> c.

By induction we have that u
xs−−→> c and σ(x)

a−→> p imply σ(u)
a−→> σ[xd 7→ p](c). Since by the

hypothesis action a has maximal priority with respect to >, by rule (r9) in Table 1 we can infer

that σ(t)
a−→> σ[xd 7→ p](Θ(c)).

Appendix A.2. Proof of Lemma 4

Proof of Lemma 4. We proceed by structural induction on c.

� Base case c = t: since c does not contain an occurrence of xd, the lemma is vacuously true.

� Base case c = xd: clearly, σ[xd 7→ p](c) = p
a−→> p

′ = σ[xd 7→ p′](c).

� Inductive step c = c′ · t: by induction over c′ we obtain σ[xd 7→ p](c′)
a−→> σ[xd 7→ p′](c′). An

application of rule (r3) in Table 1 therefore gives

σ[xd 7→ p](c) = σ[xd 7→ p](c′) · σ(t)
a−→> σ[xd 7→ p′](c′) · σ(t) = σ[xd 7→ p′](c).

� Inductive step c = Θ(c′): by induction over c′ we have σ[xd 7→ p](c′)
a−→> σ[xd 7→ p′](c′). Since

moreover a is maximal with respect to >, by applying rule (r9) in Table 1 we obtain

σ[xd 7→ p](c) = σ[xd 7→ p](Θ(c′))
a−→> σ[xd 7→ p′](Θ(c′)) = σ[xd 7→ p′](c).

Appendix A.3. Proof of Lemma 5

Proof of Lemma 5. First of all, we notice that since t
xs−−→> c, then c must contain an occurrence of xd.

We proceed by induction over the derivation of the auxiliary transition t
xs−−→> c, and for each case, we

prove the statement by proceeding by induction over n. However, in each case, the base case of n = 1 is
given by Lemma 3.3 and it is therefore omitted. Furthermore, we remark that σ(x) −→n

> p can be equivalently
rewritten as σ(x) −→n−1

> p′ −→> p for some process p′.

� Base case: t = x and t
xs−−→> c is derived by applying rule (a1) in Table 4, so that c = xd. By the

induction hypothesis over n− 1 we get

σ(t) = σ(x) −→n−1
> σ[xd 7→ p′](xd) = p′.

Since, moreover, p′ −→> p = σ[xd 7→ p](c) we conclude that σ(t) −→n
> σ[xd 7→ p](c).

� Inductive step: t = t1·t2 and t
xs−−→> c is derived by applying rule (a3) in Table 4, so that t1

xs−−→> c
′, and

c = c′ · t2. By induction over the derivation of t1
xs−−→> c

′ and n− 1, we get σ(t1) −→n−1
> σ[xd 7→ p′](c′),

which, by rule (r3) in Table 1, gives

σ(t) = σ(t1) · σ(t2) −→n−1
> σ[xd 7→ p′](c′) · σ(t2) = σ[xd 7→ p′](c).

Since p′ −→> p, Lemma 4 gives σ[xd 7→ p′](c) −→> σ[xd 7→ p](c). We can therefore conclude that
σ(t) −→n

> σ[xd 7→ p](c).

� Inductive step: t = t1 + t2 and t
xs−−→> c is derived by applying rule (a6) in Table 4, so that t1

xs−−→> c.

By induction over the derivation of t1
xs−−→> c and n− 1, we get σ(t1) −→n−1

> σ[xd 7→ p′](c). Then, by
applying rule (r6) in Table 1 and Lemma 4 we obtain

σ(t) −→n−1
> σ[xd 7→ p′](c) −→> σ[xd 7→ p](c).

A similar argument, using rule (r7), in place of rule (r6), allows us to prove the symmetric case of the
auxiliary transition triggered by t2.
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� Inductive step: t = Θ(t′) and t
xs−−→> c is derived by applying rule (a9) in Table 4, so that t′

xs−−→> c
′

and c = Θ(c′). By induction over the derivation of t′
xs−−→> c

′ and n − 1, we infer that σ(t′) −→n−1
>

σ[xd 7→ p′](c′). Hence, by applying rule (r9) in Table 1 and Lemma 4, we get

σ(t) −→n−1
> σ[xd 7→ p′](Θ(c′)) = σ[xd 7→ p′](c) −→> σ[xd 7→ p](c).

Appendix A.4. Proof of Lemma 6

Proof of Lemma 6. We prove the two implications separately. We recall that xd ∈ Θ0
�(xd). Moreover,

we notice that if t = a, then there is no variable x such that either x /l t, or transition t
xs−−→> Θl

�(xd), can
be inferred for any l ∈ N.

( =⇒ ) We proceed by structural induction on t in x /l t.

� Base case t = x. In this case we have x /0 x and hence an application of rule (a1) in Table 4 gives

t
xs−−→> xd ∈ Θ0

�(xd).

� Inductive step t = t1 + t2. In this case x /l t may be due either to x /l t1 or to x /l t2. If x /l t1, then
by induction over t1 we get t1

xs−−→> Θl
�(xd), so rule (a6) in Table 4 gives t

xs−−→> Θl
�(xd). If x /l t2, we

get the same by result by the symmetric version of rule (a6).

� Inductive step t = t1 · t2. Then it must be the case that x /l t1, so by induction over t1 we get
t1

xs−−→> Θl
�(xd). As u · t2 ∈ Θl

�(xd) for all u ∈ Θl
�(xd), an application of rule (a3) in Table 4 then

gives t
xs−−→> Θl

�(xd), which is still of the correct form.

� Inductive step t = Θ(t′). In this case x /l t is due to x /l−1 t
′. By induction over t′ we get t′

xs−−→>

Θl−1
� (xd). Hence, since Θ(u) ∈ Θl

�(xd) for all u ∈ Θl−1
� (xd), by applying rule (a9) in Table 4 we obtain

t
xs−−→> Θl

�(xd).

(⇐= ) The proof is by induction on the derivation of the auxiliary transition t
xs−−→> Θl

�(xd).

� Base case: t = x and t
xs−−→> xd ∈ Θ0

�(xd) is derived by applying rule (a1) in Table 4. We can
immediately infer that l = 0 and x /0 t.

� Inductive step: t = t1 · t2 and t
xs−−→> Θl

�(xd) is derived by applying rule (a3) in Table 4, so that

t1
xs−−→> Θl

�(xd). By induction over the derivation of the auxiliary transition from t1, we get x /l t1,
which implies x /l t1 · t2 = t.

� Inductive step: t = t1 + t2 and t
xs−−→> Θl

�(xd) is derived by applying rule (a6) in Table 4, so that

t1
xs−−→> Θl

�(xd). Induction over the derivation of the auxiliary transition from t1 then gives x /l t1,
which implies x /l t1 + t2 = t. The same argument holds for the symmetric version of rule (a6).

� Inductive step: t = Θ(t′) and t
xs−−→> Θl

�(xd) is derived by applying rule (a9) in Table 4, so that

t′
xs−−→> Θl−1

� (xd). By induction over the derivation of the auxiliary transition from t′, we get x /l−1 t
′,

which implies x /l Θ(t′) = t.
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