
Non-Finite Axiomatisability Results via Reductions:
CSP Parallel Composition and CCS Restriction⋆

Luca Aceto1,2[0000−0002−2197−3018], Elli Anastasiadi1[0000−0001−7526−9256],
Valentina Castiglioni1[0000−0002−8112−6523], and Anna

Ingólfsdóttir1[0000−0001−8362−3075]

1 ICE-TCS, Department of Computer Science, Reykjavik University, Reykjavik, Iceland
2 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. This paper studies the existence of finite, ground-complete axiomati-
sations of CSP-like parallel composition operators, and the restriction operator
from CCS, modulo bisimilarity. More specifically, we build on Moller’s result to
the effect that bisimilarity does not have a finite, ground-complete equational ax-
iomatisation over a minimal fragment of CCS, and we use a reduction technique
by Aceto et al. to lift it to various extensions of BCCSP with CSP-like parallel
operators, and to the recursion and relabelling free fragment of CCS.

1 Introduction

Some of Frits Vaandrager’s early seminal contributions were firmly rooted in the theory
and applications of process algebras and their semantics. Having been brought up in
the tradition of Bergstra and Klop’s Algebra of Communicating Processes (ACP) [14,
16, 17], Frits Vaandrager studied semantic models of algebraic process description lan-
guages [25, 26], equational axiomatisations of process equivalences [15] and their ap-
plication in verification (see, for instance, [24,39]). Moreover, together with Aceto and
Bloom, in [3] he initiated the study of methods for generating finite, ground-complete,
equational axiomatisations of bisimilarity [32,36] from operational specifications given
in the GSOS format [18]. The techniques proposed in [3] can be used to synthesise aux-
iliary operators, such as Bergstra and Klop’s left- and communication-merge operators,
that make finite axiomatisations possible and paved the way to several further studies
in the literature—see, for instance, the developments presented in [10, 21, 27, 31].

The use of auxiliary operators to obtain finite, equational, ground-complete ax-
iomatisations of bisimilarity, even for very inexpressive process algebras, was justified
by Moller in [33–35], where he showed that bisimilarity has no finite axiomatisation
over minimal fragments of Milner’s Calculus of Communicating Systems (CCS) [32]
and Bergstra and Klop’s ACP. (Henceforth, we will consider the recursion, relabelling
⋆ This work has been partially supported by the project “Open Problems in the Equational Logic

of Processes” (OPEL) of the Icelandic Research Fund (grant No. 196050-051). E. Anastasiadi
has been supported by the project “Runtime and Equational Verification Of Concurrent Pro-
grams” (REVOCOP) of the Reykjavik University Research Fund (grant No. 222021-051). V.
Castiglioni has been supported by the project “Programs in the wild: Uncertainties, adaptabiL-
iTy and veRificatiON” (ULTRON) of the Icelandic Research Fund (grant No. 228376-051).

2 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

and restriction free fragment of CCS, which, for simplicity, we still denote as CCS.)
Moller’s above-mentioned, path-breaking, negative results have been followed by a
wealth of research on non-finitely-based fragments of process algebras—see, for in-
stance, [1, 2, 4–8, 12, 20].

Our Contribution In this paper, we celebrate Frits Vaandrager’s early contributions
to the study of algebraic process description languages by answering the two questions
that Rob van Glabbeek3 asked the first author after his invited talk at LICS 20214:

Would Moller’s non-finite axiomatisability result for CCS remain true if we
replaced CCS parallel composition with the parallel operators from Hoare’s
Communicating Sequential Processes (CSP) [29]? And what if we added the
restriction operator to CCS instead?

Our first contributions concern the existence of finite, ground-complete axiomatisa-
tions of bisimilarity over process algebras that extend the language BCCSP [22, 28, 32]
with parallel operators from CSP. (BCCSP is a common fragment of Milner’s CCS and
Hoare’s CSP suitable for describing finite process behaviour.)

For each set of actions A, the CSP parallel operator |A behaves like interleaving
parallel composition for all actions that are not contained in A, but requires transitions
of its operands that are labelled with some action a ∈ A to synchronise. The result
of such a synchronisation is an a-labelled transition of the composite parallel process,
which can itself synchronise further with a-labelled steps from its environment. There-
fore, unlike CCS parallel composition that is based on hand-shaking communication,
the parallel operators from CSP support multi-way synchronisation and span the whole
spectrum from pure interleaving parallel composition (the operator |∅) to synchronous
composition (the operator |Act, where Act is the whole collection of actions that pro-
cesses may perform).

We start our investigations by considering the languages BCCSPp
A , which extend

BCCSP with the parallel operator |A for some subset A of the whole set of actions
Act, and BCCSPp

τ , which contains the parallel operator |A for each A ⊆ Act, and
the τ -prefixing operator for a distinguished action τ ̸∈ Act. We show that Moller’s
non-finite axiomatisability result for bisimilarity still holds over BCCSPp

A , when A is
a strict subset of Act, and BCCSPp

τ . On the other hand, bisimilarity affords a finite,
ground-complete axiomatisation over BCCSPp

Act.
The proofs of the above-mentioned negative results for BCCSPp

A , when A is a strict
subset of Act, and BCCSPp

τ employ a reduction-based technique proposed in [11] for
showing new, non-finite axiomatisability results over process algebras from already-
established ones. In our setting, such reductions are translations from terms in the lan-
guages BCCSPp

A (A ⊂ Act) and BCCSPp
τ to those in the fragment of CCS studied by

Moller that

3 Rob van Glabbeek was one of Frits Vaandrager’s early collaborators and fellow doctoral stu-
dent at CWI.

4 See https://www.youtube.com/watch?v=2PxM3f0QWDM for a recording of that
talk.

https://www.youtube.com/watch?v=2PxM3f0QWDM

Non-finite axiomatisability results via reductions 3

– preserve sound equations and equational provability over the source language, and
– reflect an infinite family of equations responsible for the non-finite axiomatisability

of the target language.

No reduction from BCCSPp
Act to CCS satisfying the former property modulo bisim-

ilarity reflects Moller’s family of equations witnessing his negative result over CCS.
Therefore, the reduction technique cannot be applied to BCCSPp

Act. Indeed, we present
a finite, ground-complete axiomatisation of bisimilarity over BCCSPp

Act.
We also show that, if we consider the language BCCSPp, namely BCCSP with a

parallel operator |A for each A ⊆ Act, then no reduction that is structural, i.e. that does
not introduce new variables and it is defined compositionally over terms, can reflect
Moller’s family of equations. However, we conjecture that bisimilarity does not admit
a finite, ground-complete axiomatisation over BCCSPp.

For our final contribution, we consider the language CCSr, namely CCS enriched
with restriction operators of the form ·\R. Informally, R ⊆ Act is a set of actions
that are restricted, meaning that the execution of a-labelled transitions (and of their
“complementary actions”) is prevented in t\R for all a ∈ R. By exploiting the reduction
technique described above, we show that Moller’s negative result can be lifted to CCSr,
giving thus that bisimilarity admits no finite, ground-complete axiomatisation over CCS
with restriction.

Our contributions can then be summarised as follows:

1. We consider BCCSPp
A , i.e., BCCSP enriched with one CSP-style parallel composi-

tion operator |A, with A ⊂ Act, and we show that, over that language, bisimilarity
admits no finite, ground-complete axiomatisation (Theorem 4).

2. We consider BCCSPp, i.e., BCCSP enriched with all CSP-style parallel composi-
tion operators |A, and we show that there is no structural reduction from BCCSPp

to CCS that can reflect the family of equations used by Moller to prove the negative
result for bisimilarity over CCS (Theorem 5).

3. We consider BCCSPp
τ , i.e, BCCSPp enriched with the τ -prefixing, and we show that

this algebra admits no finite, ground-complete axiomatisation modulo bisimilarity
(Theorem 6).

4. We consider BCCSPp
Act, i.e., BCCSP enriched with the CSP-style parallel compo-

sition operator |Act, and we present a finite, ground-complete axiomatisation for it,
modulo bisimilarity (Theorem 7).

5. We consider CCSr, i.e., CCS with the restriction operator, and we show that bisim-
ilarity has no finite, ground-complete axiomatisation over it (Theorem 8).

Organisation of Contents In Section 2 we review basic notions on process semantics,
behavioural equivalences, and equational logic. We also briefly recap Moller’s negative
result for bisimilarity over CCS. In Section 3 we give a bird’s-eye view of the reduction
technique from [11]. In Section 4, we present the lifting of Moller’s negative result to
BCCSPp

A (for A ⊂ Act) and BCCSPp
τ , we study the case of BCCSPp, and then we

discuss the collapse of the negative result in the case of BCCSPp
Act. In Section 5, we

use the reduction technique to prove the non-finite axiomatisability result for CCSr. We
conclude by discussing some directions for future work in Section 6.

4 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

2 Preliminaries

In this section we present some background notions on process algebras and equational
logic. To make our contribution self-contained, we also briefly recap Moller’s work on
the nonexistence of finite axiomatisations modulo bisimilarity over the recursion, rela-
belling, and restriction free fragment of CCS (henceforth simply referred to as CCS).

Labelled Transition Systems and Bisimilarity As semantic model for the algebraic
process description languages that we will study, we consider classic Labelled Transi-
tion Systems [30].

Definition 1 (Labelled Transition System). A labelled transition system (LTS) is a
triple (P,Act,−→), where P is a set of processes (or states), Act is a set of actions (or
labels), and −→ ⊆ P ×Act× P is a (labelled) transition relation.

In what follows, we assume that the set of actions Act is finite and non-empty. We let
p, q, . . . range over P , and a, b, . . . over Act. Moreover, as usual, we use p

a−→ p′ in
lieu of (p, a, p′) ∈ −→. For each p ∈ P and a ∈ Act, we write p

a−→ if p a−→ p′ holds
for some p′, and p

a−↛ otherwise. For a sequence of actions ρ = a1 · · · an (n ≥ 0), and
processes p, p′, we write p

ρ−→ p′ if and only if there exists a sequence of transitions
p = p0

a1−−→ p1
a2−−→ · · · an−−→ pn = p′. If p

ρ−→ p′ holds for some process p′, then ρ
is a trace of p. All the LTSs we will consider in this paper are finite and loop-free. The
depth of a process p in such an LTS, denoted by depth(p), is then defined as the length
of a longest trace of p.

Behavioural equivalences have been introduced as a tool to establish whether the
behaviours of two processes are indistinguishable for their observers. In the literature
we can find several notions of behavioural equivalence based on the observations that
an external observer can make on a process. In this paper we consider the classic notion
of bisimilarity [32, Chapter 4, Definition 1].

Definition 2 (Bisimilarity). Let (P,Act,−→) be a LTS. A binary symmetric relation
R ⊆ P × P is a bisimulation if, and only if, whenever (p, q) ∈ R and p

a−→ p′ then
there exists a process q′ such that q a−→ q′ and (p′, q′) ∈ R . We say that p and q are
bisimilar if there is a bisimulation relation R such that (p, q) ∈ R .

The union of all the bisimulation relations is called bisimilarity, and denoted by ∼.

It is well known that ∼ is an equivalence relation over P , and it is the largest bisim-
ulation relation [32, Chapter 4, Proposition 2].

Remark 1. Bisimilarity preserves the depth of processes, i.e., whenever p ∼ q, then
depth(p) = depth(q).

The Language BCCSP In this paper we will consider several algebraic process de-
scription languages, each characterised by the presence of a particular operator, or sets
of operators. As all those languages are extensions of BCCSP [28], consisting of the
basic operators from CCS [32] and CSP [29], in this section we use that language

Non-finite axiomatisability results via reductions 5

(act)
a.t

a−→ t
(lSum)

t
a−→ t′

t+ u
a−→ t′

(rSum)
u

a−→ u′

t+ u
a−→ u′

Table 1. The SOS rules for BCCSP operators (a ∈ Act).

to introduce some general notions and notations on term algebras that will be useful
throughout the remainder of the paper.

BCCSP terms are defined by the following grammar:

t ::= 0 | x | a.t | t+ t , (BCCSP)

where x is drawn from a countably infinite set of variables Var, a is an action from Act,
a.(·) is the prefixing operator, defined for each a ∈ Act, and ·+· is the nondeterministic
choice operator. We shall use the meta-variables t, u, . . . to range over process terms,
and write var(t) for the collection of variables occurring in the term t. The size of a
term t, denoted by size(t), is the number of operator symbols in t. A term is closed
if it does not contain any variables. Closed terms, or processes, will be denoted by
p, q, In particular, we denote the set of all BCCSP terms by T(BCCSP), and the
set of closed BCCSP terms (or BCCSP processes) by P(BCCSP). This notation can be
directly extended to all the languages that we will consider. Moreover, we omit trailing
0’s from terms and we use a summation

∑k
i=1 ti to denote the term t = t1 + · · · + tk,

where the empty sum represents 0. Henceforth, for each action a ∈ Act and natural
number m ≥ 0, we let a0 denote 0 and am+1 denote a.(am).

We use the Structural Operational Semantics (SOS) framework [37] to equip pro-
cesses with an operational semantics. The SOS rules (also called inference rules, or de-
duction rules) for the BCCSP operators given above are reported in Table 1. A (closed)
substitution σ is a mapping from process variables to (closed) terms. Substitutions are
extended from variables to terms, transitions, and rules in the usual way. Note that σ(t)
is closed, if so is σ. The inference rules in Table 1 allow us to derive valid transitions
between closed BCCSP terms. The operational semantics for BCCSP is then modelled
by the LTS whose processes are the closed terms in P(BCCSP), and whose labelled
transitions are those that are provable from the SOS rules. The same approach will be
applied to all the extensions of BCCSP that we will consider. The SOS rules of each
language will be presented in the respective sections.

We call an equivalence relation a congruence over a language if it is compositional
with respect to the operators of the language, i.e., the replacement of a component
with an equivalent one does not affect the overall behaviour. Formally, the congruence
property for bisimilarity over BCCSP, and its extensions, consists in verifying whether,
given any n-ary operator f ,

f(p1, . . . , pn) ∼ f(q1, . . . , qn) whenever pi ∼ qi for all i = 1, . . . , n.

Since all the operators considered in this paper are defined by inference rules in the de
Simone format [38], by [23, Theorem 4] we have that bisimilarity is a congruence over
BCCSP and over all the languages that we will study.

6 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

t ≈ t

t1 ≈ t2, t2 ≈ t3
t1 ≈ t3

t ≈ t′

t′ ≈ t

σ(t) ≈ σ(t′)
t ≈ t′ ∈ E

t1 ≈ t′1, . . . , tn ≈ t′n
f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)

Table 2. Rules of equational logic (f is any n-ary operator in L).

(A1) x ≈ x+ x

(A2) x+ y ≈ y + x

(A3) (x+ y) + z ≈ x+ (y + z)

(A4) x+ 0 ≈ x

Table 3. Finite equational basis for BCCSP modulo bisimilarity.

Equational Logic An equational axiomatisation (or axiom system) over a language L
is a collection E of equations t ≈ u, which are referred to as axioms, over the terms
in L. We write E ⊢ t ≈ u if the equation t ≈ u is derivable from the axioms in
E using the rules of equational logic, presented in Table 2, that express, respectively,
reflexivity, symmetry, transitivity, substitution, and closure under L contexts. Without
loss of generality, we assume that substitution can be used only when (t ≈ u) ∈ E. In
this case, σ(t) ≈ σ(u) is called a substitution instance of an axiom in E.

We are interested in equations that are valid modulo some congruence relation R
over the closed terms in the language L. An equation t ≈ u is sound modulo R , written
tRu, when σ(t)Rσ(u) for all closed substitutions σ. An axiomatisation E is sound
modulo R over L if for all terms t, u in T(L), we have that whenever E ⊢ t ≈ u, then
tRu. E is (ground-)complete modulo R if tRu implies E ⊢ t ≈ u, for all (closed)
L terms t and u. A congruence R is said to be finitely based if there exists a finite
axiomatisation E that is sound and complete modulo R .

A classic question is whether an algebra modulo the chosen notion of behavioural
congruence (in this work, bisimilarity) affords a finite equational axiomatisation. For
example, as shown by Hennessy and Milner in [28], the equations in Table 3 are a
finite axiomatisation of bisimilarity over BCCSP. We denote by E0 the axiom system
consisting of the equations in Table 3. Later on, we will extend this set of axioms to
present our positive result for BCCSPp

Act.

Moller’s Result over CCS In his thesis [33], Moller gave a celebrated non-finite ax-
iomatisability result in the field of process algebra, namely:

Theorem 1. Bisimilarity admits no finite, ground-complete axiomatisation over CCS.

Specifically, Moller considered the language CCSa with interleaving parallel com-
position, defined over Act = {a} by the following syntax:

t ::= 0 | x | a.t | t+ t | t ∥ t (CCSa)

Non-finite axiomatisability results via reductions 7

(lPar)
t

a−→ t′

t ∥ u a−→ t′ ∥ u
(rPar)

u
a−→ u′

t ∥ u a−→ t ∥ u′

Table 4. The SOS rules for CCSa interleaving parallel composition.

where x ∈ Var and ∥ denotes the interleaving parallel composition operator. The SOS
rules for CCSa operators are given by the rules in Table 1, plus the rules for the inter-
leaving parallel operator presented in Table 4.

In detail, for his result, Moller applied the following proof strategy, later referred to
as the proof-theoretic approach to negative results [9]. He considered the infinite family
of equations Φ with

Φ = {φn | n ≥ 0}

φn : a ∥ (
n∑

i=1

ai) ≈ a.(

n∑
i=1

ai) + (

n+1∑
i=2

ai) (n ≥ 0)

and he proved that whenever n is larger than the size of any term occurring in the
equations in a finite, sound axiom system E, then equation φn cannot be derived from
E. Hence, Theorem 1 specialised to the following result, which will play a fundamental
role in the technical development of our contributions:

Theorem 2 (Moller’s negative result [33, Theorem 5.2.12]). No finite axiom system
that is sound modulo bisimilarity over CCSa can prove the whole family of equations Φ.
Thus no finite, ground-complete axiom system can exist for CCSa modulo bisimilarity.

3 The Proof Strategy: Reduction Mappings

The non-finite axiomatisability results that we will present in this paper are all obtained
by means of a proof technique, proposed in [11], that allows for transferring this kind
of negative results across process languages. Even though we only apply that technique
out-of-the-box towards establishing new results, we decided to give, in this section, an
overview of the terminology and results presented in [11], to improve the readability of
our paper. As our studies are focused on the axiomatisability of bisimilarity, we consider
only this behavioural congruence in the presentation below.

We consider two processes description languages defined over the same set of vari-
ables: Lneg and Lnew. Lneg is known to be non-finitely axiomatisable modulo bisim-
ilarity, whereas Lnew is the language for which we want to prove this negative result.
The aim of the proof technique proposed in [11] is to establish whether it is possible
to lift the known result for Lneg to Lnew. This approach is based on a variation of the
classic idea of reduction mappings that, in this setting, are translations from T(Lnew)
to T(Lneg) that preserve soundness and provability.

Given a translation mapping ·̂ : T(Lnew) → T(Lneg) and a collection E of equa-
tions over Lnew terms, we let Ê = {t̂ ≈ û | t ≈ u ∈ E}. The notion of reduction is
then formalised as follows:

8 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

Definition 3 (Reduction). A mapping ·̂ : T(Lnew) → T(Lneg) is a reduction from
T(Lnew) to T(Lneg), when for all t, u ∈ T(Lnew):

1. t ∼ u =⇒ t̂ ∼ û, i.e., ·̂ preserves sound equations, and
2. E ⊢ t ≈ u =⇒ Ê ⊢ t̂ ≈ û, for each axiom system E over Lnew, i.e, ·̂ preserves

provability.

Interestingly, in [11, Theorem 2] it is proved that if a mapping is structural, then it
automatically satisfies Definition 3.2. Hence, the notion of structural mapping will be
crucial in the development of our results, as it allows for a significant simplification of
the technical proofs.

Definition 4 (Structural mapping). A mapping ·̂ : T(Lnew) → T(Lneg) is structural
if:

– It is the identity function over variables, i.e., x̂ = x for each variable x.
– It does not introduce new variables, i.e., the set of variables occurring in the term

̂f(x1, . . . , xn) is included in {x1, . . . , xn}, for each operator f in Lnew and se-
quence of distinct variables x1, . . . , xn.

– It is defined compositionally, i.e. ̂f(t1, . . . , tn) = ̂f(x1, . . . , xn)[t̂1/x1, . . . , t̂n/xn]
for each operator f in Lnew, sequence of distinct variables x1, . . . , xn and se-
quence of terms t1, . . . , tn. (Here [t̂1/x1, . . . , t̂n/xn] stands for the substitution
mapping each variable xi to t̂i (1 ≤ i ≤ n), and acting like the identity function
on all the other variables.)

Given a substitution σ : Var → T(Lnew), we let σ̂ : Var → T(Lneg) denote the
substitution that maps each variable x to σ̂(x).

Proposition 1. Assume that ·̂ : T(Lnew) → T(Lneg) is a structural mapping. Then

– σ̂(t) = σ̂(t̂), for each term t ∈ T(Lnew), and for each substitution σ : Var →
T(Lnew).

– The mapping satisfies Definition3.2.

Assume now that we have an infinite collection E of equations that are sound mod-
ulo bisimilarity, but that are not derivable from any finite, sound axiom system over
Lneg. The idea in [11] is then that if a structural mapping ·̂ is a reduction from T(Lnew)
to T(Lneg) that contains all the equations in E in its range, then the “malicious” col-
lection of equations that map to those in E cannot be derivable from any finite, sound
axiom system over Lnew. In fact, if those derivations were possible, then the equational
properties of ·̂ would allow us to write derivations (obtained via the translations of the
equational proofs) of the equations in E from a finite, sound axiom system over Lneg.
As this contradicts the established negative result over Lneg, the non-finite axiomatis-
ability result over Lnew follows.

The intuitions above are formalised in the following definition and theorem.

Definition 5 (E-reflection). Let E be a collection of equations over Lneg. A reduction
·̂ is E-reflecting, when for each t ≈ u ∈ E, there are terms t′, u′ ∈ T(Lnew) such
that the equation t′ ≈ u′ is sound modulo ∼, t̂′ = t and û′ = u. A reduction is ground
E-reflecting, if the conditions above are satisfied over closed equations.

Non-finite axiomatisability results via reductions 9

Theorem 3 (The lifting theorem). Assume that there is a collection of (closed) equa-
tions E over Lneg that is sound modulo ∼ and that is not derivable from any finite
sound axiom system over Lneg. If there exists a (ground) E-reflecting reduction from
Lnew to Lneg, then there is no sound and (ground-)complete finite axiom system for ∼
over Lnew.

We remark that the notion of (ground) E-reflecting reduction requires that only the
equations in E are reflected. This means that to establish the negative result over Lneg

it is enough to identify a particular family of equations that is reflected, disregarding the
effects of the reduction on other sound equations. For our purposes, it will be enough
to consider the family of equations Φ used by Moller to prove Theorem 2. Hence, our
target language will always be CCSa, for some action a, and we will use the lifting
technique presented in this section to prove negative results for the languages BCCSPp

A

(Section 4.2), BCCSPp
τ (Section 4.3), and CCSr (Section 5).

4 Axiomatisability Results for CSP Parallel Composition

In this section we investigate the existence of finite, ground-complete axiomatisations
of bisimilarity over the process description languages BCCSPp

A (for all A ⊂ Act),
BCCSPp

Act, BCCSPp and BCCSPp
τ . In detail, we apply the reduction technique pre-

sented in Section 3 to lift Moller’s negative result to BCCSPp
A , for each A ⊂ Act, and

to BCCSPp
τ (Theorem 4 and Theorem 6, respectively). In between, we show that the re-

duction technique cannot be applied to BCCSPp (Theorem 5). Conversely, we establish
a positive result for BCCSPp

Act, providing a finite, ground-complete axiomatisation for
bisimilarity over this language (Theorem 7).

4.1 The Languages BCCSPp
A, BCCSPp

Act, BCCSPp and BCCSPp
τ

The languages that we consider in this section are obtained by extending BCCSP with
instances of the CSP-like parallel composition operator |A, where A ⊆ Act is the set
of actions that must be performed synchronously by the parallel components. For this
reason, we shall henceforth refer to A in |A as to the synchronisation set. The operator
then behaves like interleaving parallel composition on the complement of A.

In detail, the languages are defined by the following grammar

t ::= 0 | x | a.t | t+ t | t |A t ,

with x ∈ Var and a ∈ Act, and they differ in the choice of the synchronisation set(s)
A ⊆ Act as follows:

BCCSPp
A The parallel operator |A is defined only over the fixed set A ⊂ Act (notice

that the inclusion is strict).
BCCSPp

Act The only synchronisation set is the entire set of actions Act.
BCCSPp There are no restrictions on the choice of synchronisation sets, i.e. the signa-

ture of the language contains the operator |A for all A ⊆ Act.

10 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

(lParA)
t

a−→ t′

t |A u
a−→ t′ |A u

a ̸∈ A (rParA)
u

a−→ u′

t |A u
a−→ t |A u′ a ̸∈ A

(syncA)
t

a−→ t′, u
a−→ u′

t |A u
a−→ t′ |A u′ a ∈ A

Table 5. SOS rules for the parallel operator |A, A ⊆ Act.

BCCSPp
τ This is like BCCSPp with the additional property that the prefixing operator

is of the form µ.t, with µ ∈ Act ∪ {τ} for a special action label τ ̸∈ Act (see
Section 4.3 for further details).

The SOS rules for the CSP-like parallel composition operator |A are given in Ta-
ble 5. The operational semantics of each of the above-mentioned languages is then given
by the rules in Table 1 and those in Table 5, in which A is instantiated according to the
considered language.

Let L ∈ {BCCSPp
A ,BCCSPp

Act,BCCSPp,BCCSPp
τ }. Since in the technical results to

follow we will need to distinguish between transitions over L processes and transitions
over CCSa processes, to avoid possible confusion we will denote the transition relation
over P(L) induced by the rules in Tables 1 and 5 by −→p. Similarly, we can properly
instantiate the definition of bisimilarity over L processes:

Definition 6 (Bisimilarity over BCCSPp
A , BCCSPp

Act, BCCSPp and BCCSPp
τ). Let L

be any of BCCSPp
A ,BCCSPp

Act,BCCSPp,BCCSPp
τ . Bisimulation relations over L pro-

cesses are defined by applying Definition 2 to the LTS (P(L),Act,−→p) induced by
the SOS rules in Tables 1 and 5. We use the symbol ∼p to denote bisimilarity over L
processes.

It is worth noticing that, as briefly outlined above, when the parallel components t, u
in t |A u contain only actions that are not in A, then the semantics of |A coincides with
the semantics of CCS interleaving parallel composition. On the other hand, when t and
u contain only actions in A, then |A behaves like “synchronous” parallel composition.
The following example highlights these observations.

Example 1. Let A ⊆ Act and b ∈ A. It is not difficult to see that

b |A
n∑

i=1

bi ∼p b (n ≥ 1)

and therefore

b |A
n∑

i=1

bi ∼p b |A
m∑
j=1

bj (n,m ≥ 1).

In particular, we have that the axiom

b.x |A (b.y + z) ≈ (b.x |A b.y) + (b.x |A z) if b ∈ A

Non-finite axiomatisability results via reductions 11

is sound modulo ∼p over the languages considered in this section.
Conversely, if we pick an action a ̸∈ A, then we have

a |A
n∑

i=1

ai ∼p a.

n∑
i=1

ai +

n∑
j=1

aj+1 (n ≥ 0)

and thus

a |A
n∑

i=1

ai ̸∼p a |A
m∑
j=1

aj (n ̸= m).

�

Notice that, for a ̸∈ A, if we let

φn
A : a |A

n∑
i=1

ai ≈ a.

n∑
i=1

ai +

n∑
j=1

aj+1 (n ≥ 0), (1)

then the family of equations ΦA = {φn
A | n ∈ N} can be thought of as the counter-

part in BCCSPp
A of the family Φ used by Moller to prove Theorem 2. As we will see,

this correspondence will be instrumental in applying the reduction technique to those
languages.

4.2 The Negative Result for BCCSPp
A

We start our investigations with BCCSPp
A , for a given set A ⊂ Act. In particular, by

applying the proof methodology discussed in Section 3, we prove that:

Theorem 4. BCCSPp
A does not have a finite, ground-complete axiomatisation modulo

bisimilarity.

Our first step consists in defining a mapping allowing us to rewrite BCCSPp
A terms

into CCSa terms. As the target language is built over a specific action, it is natural to
have a definition of our mapping that is parametric in that action. Hence, choose an
action a ∈ Act \ A. Notice that the requirement that the inclusion A ⊂ Act be strict
guarantees that such an action a exists.

Definition 7 (The mapping pAa). The mapping pAa : T(BCCSPp
A) → T(CCSa) is de-

fined inductively over the structure of terms as follows:

pAa (0) = 0 pAa (x) = x pAa (t+ u) = pAa (t) + pAa (u)

pAa (b.t) =

{
a.pAa (t) if b = a,

0 otherwise.
pAa (t |A u) = pAa (t) ∥ pAa (u).

By Definition 7, for each t ∈ T(BCCSPp
A), the only action occurring in pAa (t) is a.

In order to lift the negative result in Theorem 2 to BCCSPp
A , we need to prove that

the proposed mapping pAa is a ground Φ-reflecting reduction. Let us first focus on show-
ing that pAa is a reduction, i.e., we need to show that it satisfies the two constraints in
Definition 3.

12 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

Remark 2. For simplicity, we shall sometimes extend the mapping notation from terms
to equations. For instance, if e : t ≈ u is an equation over BCCSPp

A terms, we shall
write pAa (e) to denote the equation over CCSa terms pAa (t) ≈ pAa (u).

The following lemma is immediate from Definition 7.

Lemma 1. The mapping pAa is structural.

Hence, in light of Proposition 1, the mapping pAa satisfies Definition 3.2. Our order
of business will now be to show that pAa preserves sound equations.

Lemma 2. For all p ∈ P(BCCSPp
A) and q ∈ P(CCSa), if pAa (p)

a−→ q, then there
exists a BCCSPp

A process p′ such that p a−→p p
′ and pAa (p

′) = q.

Proof. We proceed by structural induction over p.

– Case p = 0. This is vacuous, since pAa (p) has no outgoing transition.
– Case p = b.p0. By Definition 7 and the assumption that pAa (p)

a−→ q, we have that
b = a ̸∈ A and pAa (p0) = q. As p a−→p p0, the claim follows.

– Case p = p1 |A p2. By Definition 7, we have that pAa (p) = pAa (p1) ∥ pAa (p2).
Moreover, by the proviso of the lemma, pAa (p1) ∥ pAa (p2)

a−→ q, for some CCSa

process q. This follows by an application of either rule (lPar) or rule (rPar) from
Table 4. We can assume, without loss of generality, that rule (lPar) was applied.
(The case of an application of rule (rPar) follows from a similar reasoning.) Hence
pAa (p1)

a−→ q′ for some CCSa process q′ such that q′ ∥ pAa (p2) = q. By the in-
duction hypothesis, we obtain that p1

a−→p p′1 for some p′1 ∈ P(BCCSPp
A) such

that pAa (p
′
1) = q′. Hence, as p1

a−→p p′1 and a ̸∈ A, we can apply rule (lParA)
from Table 5 and obtain that p = p1 |A p2

a−→p p′1 |A p2. Since pAa (p
′
1 |A p2) =

pAa (p
′
1) ∥ pAa (p2) = q′ ∥ pAa (p2) = q, the claim follows.

– Case p = p1+p2. This case is similar to the case of parallel composition discussed
above. The only difference is that rules (lSum) and (rSum) from Table 1 are applied
in place of rules (lParA) and (rParA), respectively. ⊓⊔

Lemma 3. For all p, p′ ∈ P(BCCSPp
A), if p a−→p p

′ then pAa (p)
a−→ pAa (p

′).

Proof. We proceed by induction on the size of the proof for the transition p
a−→p p′.

We distinguish three cases, according to the last inference rule from Tables 1 and 5
that is applied in the proof. (Notice that the analysis of symmetric rules is omitted.) We
remark that since a ̸∈ A, rule (syncA) cannot be applied as the last rule in the proof for
p

a−→p p
′.

– Rule (act). In this case, we have that p = a.p′ and p
a−→p p′. By Definition 7, we

have that pAa (a.p
′) = a.pAa (p

′), and, thus, we can apply rule (act) and obtain that
pAa (p) = pAa (a.p

′) = a.pAa (p
′)

a−→ pAa (p
′). Hence the claim follows in this case.

– Rule (lSum). In this case, we have that p = p0 + p1, p0
a−→p p′, and pAa (p) =

pAa (p0) + pAa (p1). By the inductive hypothesis we get that pAa (p0)
a−→ pAa (p

′). By
applying now rule (lSum), we conclude that pAa (p) = pAa (p0)+pAa (p1)

a−→ pAa (p
′).

Non-finite axiomatisability results via reductions 13

– Rule (lParA). In this case, as a ̸∈ A, we have that p = p0 |A p1, p0
a−→p p′0

for some p′0 ∈ P(BCCSPp
A), and p′ = p′0 |A p1. By induction, we obtain that

pAa (p0)
a−→ pAa (p

′
0). Hence, by applying rule (lPar) from Table 4 to pAa (p), we get

that pAa (p) = pAa (p0)∥pAa (p1)
a−→ pAa (p

′
0)∥pAa (p1) = pAa (p

′
0 |A p1) = pAa (p

′). ⊓⊔
We can now proceed to prove that pAa satisfies Definition 3.1 as well. Moreover, we

show that it is also ground Φ-reflecting.

Proposition 2. The mapping pAa satisfies the following properties:

1. For all t, u ∈ T(BCCSPp
A), if t ∼p u then pAa (t) ∼ pAa (u).

2. The mapping pAa is ground Φ-reflecting.

Proof. We prove the two items separately.

1. First, observe that for every (closed) term t in CCSa there is a (closed) term tp,Aa in
BCCSPp

A such that pAa (t
p,A
a) = t. The term tp,Aa is defined as follows:

0p,Aa = 0 xp,Aa = x (a.t)p,Aa = a.tp,Aa

(t+ u)p,Aa = tp,Aa + up,Aa (t ∥ u)p,Aa = tp,Aa |A up,Aa .

Given a CCSa substitution σ, we define σp,A
a to be the BCCSPp

A substitution given
by σp,A

a (x) = (σ(x))p,Aa . By Proposition 1 and since the mapping pAa is structural
(Lemma 1), we have that

pAa (σ
p,A
a (t)) = pAa (σ

p,A
a)(pAa (t)) = σ(pAa (t)),

for all t ∈ T(BCCSPp
A).

To prove the claim, it is then enough to show that the following relation

R = {(σ(pAa (t)), σ(pAa (u))) | t ∼p u and σ : Var → P(CCSa)}

is a bisimulation relation over CCSa processes.
Notice, first of all, that since ∼p is symmetric, then so is R . Assume now that
σ(pAa (t))Rσ(pAa (u)), where t, u ∈ T(BCCSPp

A) and σ is a closed CCSa substitu-
tion. By the definition of R , we have that t ∼p u. Assume now that σ(pAa (t))

a−→ q

for some q ∈ P(CCSa). By the observation above, this means that pAa (σ
p,A
a (t))

a−→
q. By Lemma 2, we get that σp,A

a (t)
a−→p p′ for some p′ ∈ P(BCCSPp

A) such
that pAa (p

′) = q. As t ∼p u implies that σp,A
a (t) ∼p σp,A

a (u), we have that
σp,A
a (u)

a−→p p′′, for some p′′ ∈ P(BCCSPp
A) such that p′ ∼p p′′. Addition-

ally, by Lemma 3 we have that σ(pAa (u)) = pAa (σ
p,A
a (u))

a−→ pAa (p
′′). We can

then conclude by noticing that, since p′ ∼p p′′, by definition of R it holds that
q = pAa (p

′)R pAa (p
′′), i.e., R is a bisimulation relation over CCSa processes.

2. In order to show that pAa is ground Φ-reflecting, it is enough to argue that the family
ΦA consisting of the closed equations φn

A defined in Equation 1 is mapped exactly
onto Φ. Since a ̸∈ A we have that pAa simply replaces all the occurrences of |A in
each equation φn

A with ∥. Hence, we have that pAa (φ
n
A) = φn, for each n ≥ 0. ⊓⊔

From Lemma 1 and Proposition 2, we can infer that pAa is a well-defined reduc-
tion as in Definition 3, and it is also ground Φ-reflecting. Theorem 4 then follows by
Theorem 2 and Theorem 3.

14 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

4.3 The Case of BCCSPp and the Negative Result for BCCSPp
τ

Given the negative result over BCCSPp
A , it is natural to wonder what happens when we

extend that language to BCCSPp, namely BCCSP enriched with an operator |A , for
each A ⊆ Act.

One might expect that bisimilarity does not have a finite, ground-complete axioma-
tisation over BCCSPp and indeed we conjecture that such a results holds. However, the
reduction method cannot be applied to prove such a claim. Specifically, consider the
language BCCSPp over Act = {a}. We can prove the following result:

Theorem 5. There is no structural reduction from BCCSPp to CCSa that is ground
Φ-reflecting.

Proof. To simplify notation, let us use |a in place of |{a}.
Assume that ·̂ is a structural reduction from BCCSPp to CCSa. Our aim is to prove

that ·̂ is not ground Φ-reflecting.
To this end, we start by recalling that, since ·̂ is structural (Definition 4), then:

ât = âx[t̂/x], for each t ∈ T(BCCSPp) (2)

t̂1 ⊙ t2 = x̂1 ⊙ x2[t̂1/x1, t̂2/x2], for each t1, t2 ∈ T(BCCSPp) (3)
and binary operator ⊙ ∈ {+, |∅, |a}.

Moreover, as ·̂ preserves sound equations (Definition 3), we have that:

âx |a 0 ∼ 0̂ ∼ 0̂ |a ax; (4)

̂an |a an ∼ ân, for all n ≥ 0; (5)

0̂+ 0 ∼ 0̂; (6)

0̂ |∅ 0 ∼ 0̂. (7)

Assume now that
x̂1|ax2 = t (8)

for some t ∈ T(CCSa) with var(t) ⊆ {x1, x2} (as ·̂ is structural).
We can distinguish two cases, according to whether t is a closed term or not. In both

cases, we shall show that ·̂ is not ground Φ-reflecting.

– CASE 1: t IS A CLOSED CCSa TERM. In this case, for each n ≥ 0, we have that

t ∼ ân ∼ 0. (9)

Indeed,

ân ∼ ̂an |a an (by 5)

∼ t[ân/x1, ân/x2] (by 3 and 8)

∼ t[0̂/x1, 0̂/x2] (since t is closed)

∼ 0̂ (by 3 and 5 with n = 0).

We now claim that

Non-finite axiomatisability results via reductions 15

Claim 1: For each p ∈ P(BCCSPp), it holds that p̂ ∼ 0̂.

Before proving Claim 1 above, we observe that by using it we can immediately
show that the mapping ·̂ is not ground Φ-reflecting. Indeed, since

a ∥ a ̸∼ a ∥ (a+ a2),

by Claim 1 there cannot be two processes p, q ∈ P(BCCSPp) such that p̂ = a ∥ a
and q̂ = a ∥ (a+ a2). Let us now prove Claim 1.

Proof of Claim 1: We proceed by induction on the structure of process p.
• The case p = 0 is trivial.
• Case p = aq. We have

p̂ = âx[q̂/x] (by 2)

∼ âx[0̂/x] (by induction and ∼ is a congruence)

∼ â0 (by 2)

∼ 0̂ (by 9).

• Case p = p1 ⊙ p2 for some binary operator ⊙ ∈ {+, |∅, |a}. In this case,

p̂ = x̂1 ⊙ x2[p̂1/x1, p̂2/x2] (by 3)

∼ x̂1 ⊙ x2[0̂/x1, 0̂/x2] (by induction and ∼ is a congruence)

∼ 0̂⊙ 0 (by 3)

∼ 0̂ (by 5–7 according to the form of ⊙).

This concludes the proof of Claim 1.
The proof of Case 1 is now complete.

– CASE 2: t IS AN OPEN CCSa TERM. Assume, without loss of generality, that t
contains at least an occurrence of x1. (The cases of x2 ∈ var(t) and x1, x2 ∈ var(t)
can be treated in a similar fashion and are therefore omitted.) Firstly, we observe
that for each p ∈ P(BCCSPp)

0̂ ∼ âp |a 0 (by 4)

= t[âp/x1, 0̂/x2] (by 3 and 8).

Moreover, we recall that for every u ∈ CCSa and y ∈ Var, it holds that whenever
y ∈ var(u) then depth(σ(y)) ≤ depth(σ(u)) for every closed substitution σ.
Hence, since t ∈ T(CCSa) and x1 ∈ var(t), we have that

depth(âp) ≤ depth(âp |a 0) = depth(0̂). (10)

We claim that

16 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

Claim 2: For each n ≥ 0 and processes p1, . . . , pn ∈ P(BCCSPp), it holds that

depth(
∑̂n

i=1 api) ≤ depth(0̂).

Proof of Claim 2: We proceed by induction on n ≥ 0.
• The case n = 0 is trivial.

• For the inductive step, we have that:

depth(

n̂+1∑
i=1

api)

= depth(
̂n∑

i=1

api + apn+1)

= depth(x̂1 + x2[

n̂∑
i=1

api/x1, âpn+1/x2]) (by 3)

≤ depth(x̂1 + x2[0̂/x1, 0̂/x2]) (by induction and 10)

= depth(0̂+ 0) (by 3)

= depth(0̂) (by 6 and Remark 1).

This concludes the proof of Claim 2.

Claim 3: For each p ∈ P(BCCSPp) it holds that depth(p̂) ≤ (̂0).

Proof of Claim 3: First of all, we notice that each BCCSPp process can be rewrit-
ten into head normal form up to bisimilarity. This means that, given any p ∈
P(BCCSPp), we have that p ∼

∑n
i=1 api for some n ≥ 0 and p1, . . . , pn ∈

P(BCCSPp).
Since ·̂ preserves sound equations, we have

p̂ ∼
n̂∑

i=1

api.

Hence, by Claim 2 above, it follows that

depth(p̂) = depth(

n̂∑
i=1

api) ≤ depth(0̂). (11)

This concludes the proof of Claim 3.
We can now proceed to show that ·̂ is not ground Φ-reflecting. Let k = depth(0̂).
We have that equation φk ∈ Φ is of the form:

a ∥ (
k∑

i=1

ai) ≈ a.(

k∑
i=1

ai) +

k+1∑
i=2

ai.

Non-finite axiomatisability results via reductions 17

In particular, the depth of a ∥ (
∑k

i=1 a
i) is k + 1. Therefore, by 11, there is no

p ∈ P(BCCSPp) such that p̂ = a ∥ (
∑k

i=1 a
i).

The proof of Case 2 is now concluded.

This completes the proof of the Theorem 5. ⊓⊔

Although we proved Theorem 5 in the simplified setting of Act = {a}, it is not
difficult to see that the proof can be extended to the general case {a} ⊂ Act in a
straightforward manner.

Since the reduction method cannot be applied, one might show the non-existence
of a finite, ground-complete axiomatisation of bisimilarity over BCCSPp by adapting
the strategy employed by Moller in his proof of Theorem 2. However, since that proof
would require several pages of technical results, we leave it as an avenue for future
research, and we deal with the presence of all the operators |A in a simplified setting.

The basic idea behind the reduction defined for BCCSPp
A is that we can always

identify an action a ∈ Act \ A such that the parallel operator |A always allows for
interleaving of a-moves of its arguments. Clearly, if we add an operator |A for each
A ⊆ Act to the language, it is no longer possible to identify such an action. There
is, however, a special action that is not used to build syntactically CSP terms, but it is
however necessary to express their semantics: the silent action τ ̸∈ Act. CSP terms are
defined over Act, which means that the language does not offer a τ -prefixing operator;
however, in order to properly define the operational semantics of the internal choice op-
erator, the set of action labels in the LTS is Act∪{τ}. In particular, as explained in [19],
the operational semantics of the parallel operators always allow for the interleaving of
τ -moves of their arguments.

Hence, we now consider BCCSPp
τ , i.e., the extension of BCCSPp that includes the

τ -prefixing operator, and we prove the following result:

Theorem 6. BCCSPp
τ modulo bisimilarity does not afford a finite, ground-complete ax-

iomatisation.

To this end, we apply the same proof technique that we used in Section 4.2 for
BCCSPp

A . The reduction mapping for BCCSPp
τ is almost identical to the mapping pAa

defined for BCCSPp
A , the only difference being that now we consider the language CCSτ

as target language, i.e., CCSa with a = τ .

Remark 3. Theorem 2 remains true over CCSτ . In fact, as we are considering strong
bisimilarity, there is no difference between τ and any other observable action a ∈ Act.
Specifically, if we let Φτ be the family of equations in Φ in which each occurrence of
a is replaced by τ , then we can repeat Moller’s arguments in a step-by-step fashion
to obtain that no finite axiom system, that is sound modulo bisimilarity, can prove the
whole family of equations Φτ .

Definition 8 (The mapping pτ). The mapping pτ : T(BCCSPp
τ) → T(CCSτ) is de-

fined inductively over the structure of BCCSPp
τ terms as follows:

pτ (0) = 0 pτ (x) = x pτ (t+ u) = pτ (t) + pτ (u)

18 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

pτ (µ.t) =

{
τ.pτ (t) if µ = τ,

0 otherwise;
pτ (t |A u) = pτ (t) ∥ pτ (u).

Intuitively, we use the mapping pτ to eliminate any action b ̸= τ from terms, so
that a process pτ (p |A q) can perform a transition pτ (p |A q)

τ−→ p′, for some CCSa

process p′, if and only if b = τ . (Recall that, by construction τ ̸∈ A for each A ⊆ Act.)
First, we note that this mapping is a structural mapping.

Lemma 4. The mapping pτ is structural.

We now state the corresponding results over BCCSPp
τ to Lemma 2 and Lemma 3.

Lemma 5. For all p ∈ P(BCCSPp
τ) and q ∈ P(CCSτ), if pτ (p)

τ−→ q, then there exists
a BCCSPp

τ process p′, such that p τ−→p p
′ and pτ (p

′) = q.

Proof. The proof is by structural induction over p. We omit it since it is similar to that
of Lemma 2. ⊓⊔

Lemma 6. For all p, p′ ∈ P(BCCSPp
τ), if p τ−→p p

′ then pτ (p)
τ−→ pτ (p

′).

Proof. The proof proceeds by induction over the size of the proof for p τ−→p p′. It is
analogous to the proof of Lemma 3, and it is therefore omitted. ⊓⊔

The following result, which extends Proposition 2 to BCCSPp
τ , allows us to prove

that pτ is a well-defined reduction mapping that is also ground Φτ -reflecting.

Proposition 3. The following properties hold for the mapping pτ :

1. For all t, u ∈ T(BCCSPp
τ), if t ∼p u, then pτ (t) ∼ pτ (u).

2. The mapping pτ is ground Φτ -reflecting.

Proof. 1. We start by observing that for every (closed) term t in CCSτ there is a
(closed) term tpτ in BCCSPp

τ such that pτ (t
p
τ) = t. The term tpτ is defined as follows:

0pτ = 0 xpτ = x (τ.t)pτ = τ.tpτ

(t+ u)pτ = tpτ + upτ (t ∥ u)pτ = tpτ |∅ upτ .

Then, given a CCSτ substitution σ, we define the BCCSPp
τ substitution σp

τ by
σ
p
τ (x) = (σ(x))

p
τ . By Lemma 4 and Proposition 1, we have that pτ (σ

p
τ (t)) =

pτ (σ
p
τ)(pτ (t)) = σ(pτ (t)) for all t ∈ T(BCCSPp

τ).
The proof of this statement then proceeds as that of the corresponding statement in
Proposition 2, and it is therefore omitted.

2. Consider the family of equations Φτ,∅ = {φn
τ,∅ | n ∈ N}, where the closed

equations φn
τ,∅ are defined as in Equation 1, using the set ∅ as synchronisation

set, and replacing each occurrence of a with τ . It is straightforward to prove that
pτ (φ

n
τ,∅) = φτ,n for each n ∈ N. Hence, pτ is ground Φτ -reflecting. ⊓⊔

Theorem 6 is then obtained as a direct consequence of Lemma 4, Proposition 3,
Theorem 3, and Theorem 2.

Non-finite axiomatisability results via reductions 19

(P1) x |Act y ≈ y |Act x

(P2) (x+ y) |Act z ≈ (x |Act z) + (y |Act z)

(P3) (x |Act 0) ≈ 0

(P4) (a.x |Act a.y) ≈ a.(x |Act y), for each a ∈ Act

(P5) (a.x |Act b.y) ≈ 0, for b ̸= a, and a, b ∈ Act.

Table 6. Additional axioms for BCCSPp
Act.

4.4 The Case of BCCSPp
Act

We now argue that the requirement that the inclusion A ⊂ Act be strict, used in Sec-
tion 4.2, is indeed necessary for Theorem 4 to hold. We also notice that a similar require-
ment is not explicitly expressed for the validity of Theorem 6, proved in Section 4.3,
because having |A defined for all A ⊆ Act automatically guaranteed the existence of
at least one synchronisation set A such that a ̸∈ A for some action a ∈ Act, namely
the synchronisation set A = ∅. Moreover, as discussed in Example 1, given a synchro-
nisation set A, the requirement a ̸∈ A is crucial to guarantee the soundness modulo
bisimilarity of equation φn

A, for any n ∈ N (see Equation 1).
In this section, we handle the border case of the language BCCSPp

Act, which in-
cludes only the parallel operator |Act, and we show that for this special case a positive
result holds: we provide a finite, ground-complete axiomatisation of bisimilarity over
this language. Let us consider the axiom system Ep = E0 ∪ {P1,P2,P3,P4,P5}, where
E0 consists of the axioms in Table 3, and axioms P1–P5 are reported in Table 6. Notice
that the axiom schemata P4 and P5 generate only finitely many axioms. More precisely,
P4 generates |Act| axioms, and P5 generates |Act| × (|Act| − 1) axioms. We will now
prove the following result:

Theorem 7. Ep is a finite, ground-complete axiomatisation of BCCSPp
Act modulo bisim-

ilarity.

The idea behind the proof of Theorem 7 is that the axioms in Table 6 allow us
to eliminate all occurrences of the parallel operator |Act from BCCSPp

Act processes.
Hence, every BCCSPp

Act process can be proven equal to a BCCSP process using Ep .
The ground-completeness of Ep then follows from that of E0 proven in [28]. To that
end, we first show:

Lemma 7. For all closed BCCSP terms p and q, there exists a closed BCCSP term r
such that Ep ⊢ p |Act q ≈ r .

Proof. The proof is by induction on size(p |Act q). First of all we notice that, given any
closed BCCSP term p, we can assume, without loss of generality, that p =

∑
i∈I aipi

for some finite index set I , actions ai ∈ Act, and closed BCCSP terms pi, for i ∈ I . In
fact, in case p is not already in this shape, then by applying axioms A2 and A4 in Table 3
we can remove superfluous occurrences of 0 summands. In particular, we remark that

20 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

this transformation does not increase the number of operator symbols occurring in p.
Thus we proceed under the assumption that

p =
∑
i∈I

ai.pi and q =
∑
j∈J

bi.qj .

We proceed by a case analysis on the cardinality of the sets of indexes I and J .

– If either I = ∅ or J = ∅, then p = 0 or q = 0. In light of P1, without loss of
generality, we can assume that q = 0 and we have that p |Act q = p |Act 0. Thus
by applying axiom P3, we get Ep ⊢ p |Act q ≈ 0 and we are done.

– If both I and J are singletons, then we have that p = a.p′ and q = b.q′, for some
a, b ∈ Act and BCCSP processes p′ and q′.
If a = b, then we use axiom P4 to get Ep ⊢ a.p′ |Act a.q

′ ≈ a.(p′ |Act q
′). Since

the size of p′ |Act q′ is smaller than that of p |Act q, by the induction hypothesis,
there exists a BCCSP process r′ such that Ep ⊢ p′ |Act q′ ≈ r′. Thus we have
Ep ⊢ a.p′ |Act a.q

′ ≈ a.r′, which is a BCCSP process.
In the case that a ̸= b, then we can use axiom P5, to infer Ep ⊢ a.p′ |Act b.q

′ ≈ 0
and we are done.

– We can now assume, without loss of generality, that |I| > 1 and |J | ≥ 1. This
means that we can express p as the summation of two summands of smaller size
that are different from 0, i.e. p = p1 + p2, for some BCCSP processes p1 and p2.
Then, we use axiom P2 to get Ep ⊢ (p1 + p2) |Act q ≈ (p1 |Act q) + (p2 |Act q).
Since both p1 |Act q and p2 |Act q have size less than that of p |Act q, by the
induction hypothesis, we have that there exist BCCSP processes r′ and r′′ such
that Ep ⊢ p1 |Act q ≈ r′ and Ep ⊢ p2 |Act q ≈ r′′. We thus have that Ep ⊢
p |Act q ≈ r′ + r′′, which is a BCCSP process, and we are done. ⊓⊔

The above lemma is the key step in the elimination of |Act from closed terms.
Namely:

Proposition 4. For every closed BCCSPp
Act process p there exists a closed BCCSP pro-

cess q such that Ep ⊢ p ≈ q.

Proof. The proof is straightforward by structural induction on p and using Lemma 7 in
the case that p is of the form p1 |Act p2, for some BCCSPp

Act processes p1, p2. ⊓⊔

The ground-completeness of Ep over BCCSPp
Act follows from Proposition 4 and the

ground-completeness of E0 over BCCSP [28].

5 The Case of Restriction

In this section we apply the reduction technique described in Section 3 to show that
bisimilarity does not have a finite, ground-complete equational axiomatisation over the
recursion and relabelling free fragment of CCS. In detail, we assume a finite set of
action names Act, and we let Act denote the set of action co-names, i.e., Act = {a |
a ∈ Act}. As usual, we postulate that a = a and a ̸= a for all a ∈ Act. Then, we let

Non-finite axiomatisability results via reductions 21

(r1)
t

µ−→ t′

t | u µ−→ t′ | u
(r2)

u
µ−→ u′

t | u µ−→ t | u′ (r3)
t

α−→ t′ u
α−→ u′

t | u τ−→ t′ | u′

(r4)
t

α−→ t′

t\L α−→ t′\R
α,α ̸∈ R (r5)

t
τ−→ t′

t\L τ−→ t′\R

Table 7. The SOS rules for CCSr operators (µ ∈ Actτ , α ∈ Act ∪Act).

Actτ = Act ∪ Act ∪ {τ}, where τ ̸∈ Act ∪ Act. Henceforth, we let µ, ν, . . . range
over actions in Actτ , α, β, . . . range over actions in Act∪Act, and a, b, . . . range over
actions in Act.

We denote by CCSr the recursion and relabelling free fragment of CCS with the
full merge operator (denoted by |) generated by the following grammar:

t ::= 0 | x | µ.t | t+ t | t | t | t\R (CCSr)

where x ∈ Var, µ ∈ Actτ and R ⊆ Act ∪Act.
Following [32], the action symbol τ will result from the synchronised occurrence

of the complementary actions α and α, as described by the inference rules in Table 7.
We recall that the restriction operator t\R prevents t (and its derivatives) from

performing any α-transition, for all α ∈ R.
The operational semantics of CCSr is obtained by adding the inference rules for the

full merge and the restriction operator given in Table 7 to the rules for BCCSP operators
given in Table 1. In the technical results that follow, we will need to distinguish between
transitions over CCSr processes, and transitions over CCSa processes. Hence, to avoid
possible confusion and favour thus readability, we adopt the same strategy we used in
Section 4, and use special symbols to distinguish them: we denote the transition relation
induced by the rules in Tables 1 and 7 by −→r, and bisimilarity over P(CCSr) by ∼r.

Definition 9 (Bisimulation over CCSr). Bisimulation relations over CCSr processes
are defined by applying Definition 2 to the LTS (P(CCSr),Actτ ,−→r) induced by the
SOS rules in Table 7. We use the symbol ∼r to denote bisimilarity over CCSr processes.

5.1 The Negative Result

Our main goal in this section is to prove the following theorem:

Theorem 8. Bisimilarity has no finite, ground-complete axiomatisation over CCSr.

To this end, as already done in Sections 4.2 and 4.3, we exploit the reduction tech-
nique from [11] and Moller’s non-finite axiomatisability result from CCSa (Theorem 2).
In detail:

– We select a particular action a ∈ Act.
– We consider the language CCSa and the instantiation of the equations φn in the

family Φ over processes defined using only that action.

22 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

– We provide a translation mapping from CCSr to CCSa, denoted by ra, whose def-
inition will be parametric in the chosen action a, that will allow us to eliminate all
CCSr terms in which the execution of a is restricted, while ensuring the possibility
to perform any a-transition that is unrestricted.

It will be then enough to show that the mapping ra is structural, it preserves the sound-
ness of equations from CCSr to CCSa, and it is ground Φ-reflecting, to obtain the valid-
ity of the lifting of the negative result in Theorem 2 to CCSr, proving thus Theorem 8.

5.2 The Reduction

Choose an action a from the action set Act. Then we define a mapping ra : T(CCSr) →
T(CCSa) allowing us to rewrite any CCSr term into a CCSa term.

Definition 10 (The mapping ra). The mapping ra : T(CCSr) → T(CCSa) is defined
inductively as follows:

ra(0) = 0 ra(t+ u) = ra(t) + ra(u)

ra(x) = x ra(t | u) = ra(t) ∥ ra(u)

ra(µ.t) =

{
a.ra(t) if µ = a

0 otherwise
ra(t\R) =

{
ra(t) if a, a ̸∈ R

0 otherwise.

Notice that a is the only action that may possibly occur in ra(t), for each t ∈
T(CCSr).

We now proceed to show that the mapping ra is a well-defined reduction, according
to Definition 3. As a first step, we notice that ra is structural by definition.

Lemma 8. The mapping ra is structural.

We now proceed to prove two technical lemmas, that will be useful to prove that ra
is a reduction.

Lemma 9. For all p ∈ P(CCSr), and q ∈ P(CCSa), if ra(p)
a−→ q, then there exists

some p′ ∈ P(CCSr) such that p a−→r p
′ and ra(p

′) = q.

Proof. The proof proceeds by structural induction over the P(CCSr) process p. As
for prefixing, nondeterministic choice, and parallel composition the proof is analogous
to that of the corresponding steps in Lemma 2, we limit ourselves to present only the
inductive step related to the restriction operator.

Let p = p1\R. We can distinguish two cases, according to whether a ∈ R or a ∈ R,
or not (see Definition 10):

– Assume that a ∈ R or a ∈ R. Then ra(p) = 0, and this case becomes vacuous as
ra(p)

a−↛ .
– Assume now that a, a ̸∈ R. Then ra(p) = ra(p1) and ra(p1)

a−→ q. By induction
over p1, there is some p′1 ∈ P(CCSr) such that p1

a−→r p′1 and ra(p
′
1) = q. Since

a, a ̸∈ R, by an application of rule (r4) from Table 7 we obtain that p a−→r p′1\R.
Finally, by Definition 10, since a, a ̸∈ R it follows that ra(p′1\R) = ra(p

′
1) = q as

required. ⊓⊔

Non-finite axiomatisability results via reductions 23

Lemma 10. For all p, p′ ∈ P(CCSr), if p a−→r p
′, then ra(p)

a−→ ra(p
′).

Proof. The proof proceeds by induction over the size of the proof for the transition
p

a−→r p′. Also in this case, given the similarities with the proofs of the corresponding
cases in Lemma 3, we limit ourselves to analyse only the case in which the last inference
rule from Table 7 that is applied in the proof for p a−→r p′ is rule (r4), i.e., the rule for
restriction. (In particular, we remark that since a ̸= τ , rules (r3) and (r5) cannot be
applied as the last rules in the proof for p a−→r p

′.)
Let (r4) be the last rule applied in the proof. In this case, p = p1\R, p1

a−→r p′1,
and p′ = p′1\R. In particular, the application of rule (r4) guarantees that a, a ̸∈ R,
so that ra(p) = ra(p1), by Definition 10. By induction we obtain that ra(p1)

a−→
ra(p

′
1). Clearly, this directly gives ra(p)

a−→ ra(p
′
1). Since, moreover, a, a ̸∈ R, by

Definition 10 we also get that ra(p′) = ra(p
′
1\R) = ra(p

′
1). We can then conclude

that ra(p)
a−→ ra(p

′). ⊓⊔

We now have all the ingredients necessary to prove that the mapping ra is a well-
defined ground Φ-reflecting reduction.

Proposition 5. The mapping ra satisfies the following properties:

1. For each t, u ∈ T(CCSr), t ∼r u implies ra(t) ∼ ra(u).
2. The mapping ra is ground Φ-reflecting.

Proof. We prove the two statements separately.

1. First of all, for each t ∈ T(CCSa) we define tra ∈ T(CCSr) as follows:

0ra = 0 xra = a (a.t)ra = a.tra

(t+ u)ra = tra + ura (t ∥ u)ra = tra | ura.

It is then immediate to check that for each t ∈ T(CCSa) we have that ra(tra) = t.
Then, given any CCSa substitution σ, we define σr

a as the CCSr substitution such
that σr

a(x) = (σ(x))ra. The claim then follows by applying the same reasoning used
in the proof of Proposition 2.

2. Consider the family of equations Φr defined as follows:

φn
r : a |

n∑
i=1

ai ≈ a.

n∑
i=1

ai +

n∑
j=1

aj+1 (n ≥ 0)

Φr = {φn
r | n ≥ 0}.

It is straightforward to prove that ra(φn
r) = φn for each n ∈ N, and thus that ra is

ground Φ-reflecting. ⊓⊔

Theorem 8 is then a immediate consequence of Lemma 8, Proposition 5, Theorem 3,
and Theorem 2.

24 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

6 Concluding Remarks

In this paper, we have exploited the reduction technique from [11], for the lifting of neg-
ative results across process algebras, to prove the non-finite axiomatisability of various
extensions of BCCSP modulo bisimilarity. In detail, we have proved that bisimilarity
does not admit a finite, ground-complete axiomatisation 1. over BCCSPp

A , i.e., BCCSP
enriched with a CSP-like parallel operator |A, with A ⊂ Act, 2. over BCCSPp

τ , i.e.,
BCCSP enriched with τ -prefixing, τ ̸∈ Act, and CSP-like parallel operators with any
possible synchronisation set, and 3. over CCSr, i.e., the recursion and relabelling free
fragment of CCS. Interestingly, among all these negative results, we found a positive
one: if we consider only the CSP-like parallel operator |Act, forcing all the actions in
the parallel components to be synchronised, then a finite, ground-complete axiomatisa-
tion of bisimilarity over BCCSPp

Act exists. Moreover, we have proved that the reduction
technique from [11] cannot be applied in the case of BCCSPp, i.e., BCCSP enriched
with all parallel operators |A for A ⊆ Act.

As a natural step for future work, we will provide a direct proof of the fact that
bisimilarity does not admit a finite, ground-complete axiomatisation over BCCSPp.

Moreover, we plan to investigate how far the lifting technique of [11] can be pushed.
In particular, we are interested in studying whether (some variations of) it can be used
to lift known results for strong behavioural equivalences to their weak counterparts or
to potentially extend results over weak behavioural congruences (such as Theorem 10
presented in [1]) to new settings.

Another possible direction for future work, would be to focus on full recursion free
CCS. Aceto, Ingólfsdóttir, Luttik and van Tilburg gave an equational axiomatisation
of bisimilarity over recursion-free CCS with interleaving parallel composition and the
left-merge operator in [13]. That result crucially depends on the fact that restriction
and relabelling distribute over interleaving parallel composition. On the other hand,
neither restriction nor relabelling distribute over parallel composition in the presence
of synchronisation. Obtaining a complete axiomatisation of full recursion free CCS
modulo bisimilarity, with restriction, relabelling and parallel composition that allows
for synchronisation is a natural, and very challenging, avenue for future research.

Acknowledgements

The first author thanks Frits Vaandrager for the joint work they did about thirty years
ago and Rob van Glabbeek for asking the questions that led to the research presented in
this article.

We thank the reviewers for their valuable comments on our paper. In particular, we
are very grateful to the reviewer who spotted a technical error in the original manuscript.

References

1. Aceto, L., Anastasiadi, E., Castiglioni, V., Ingólfsdóttir, A., Luttik, B.: In search of lost time:
Axiomatising parallel composition in process algebras. In: Proceedings of LICS 2021. pp.
1–14. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.9470526

https://doi.org/10.1109/LICS52264.2021.9470526

Non-finite axiomatisability results via reductions 25

2. Aceto, L., Anastasiadi, E., Castiglioni, V., Ingólfsdóttir, A., Luttik, B., Pedersen, M.R.: On
the axiomatisability of priority III: Priority strikes again. Theor. Comput. Sci. 837, 223–246
(2020). https://doi.org/10.1016/j.tcs.2020.07.044

3. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Inf. Comput.
111(1), 1–52 (1994). https://doi.org/10.1006/inco.1994.1040

4. Aceto, L., Castiglioni, V., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: Are two binary operators
necessary to finitely axiomatise parallel composition? In: Proceedings of CSL 2021. LIPIcs,
vol. 183, pp. 8:1–8:17 (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.8

5. Aceto, L., Castiglioni, V., Ingólfsdóttir, A., Luttik, B., Pedersen, M.R.: On the axiomatisabil-
ity of parallel composition: A journey in the spectrum. In: Proceedings of CONCUR 2020.
LIPIcs, vol. 171, pp. 18:1–18:22 (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.18

6. Aceto, L., Fokkink, W., van Glabbeek, R.J., Ingólfsdóttir, A.: Nested seman-
tics over finite trees are equationally hard. Inf. Comput. 191(2), 203–232 (2004).
https://doi.org/10.1016/j.ic.2004.02.001

7. Aceto, L., Fokkink, W., Ingólfsdóttir, A.: A menagerie of non finitely based pro-
cess semantics over BPA* - from ready simulation to completed traces. Math. Struct.
Comput. Sci. 8(3), 193–230 (1998), http://journals.cambridge.org/action/
displayAbstract?aid=44743

8. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: CCS with Hennessy’s merge
has no finite-equational axiomatization. Theor. Comput. Sci. 330(3), 377–405 (2005).
https://doi.org/10.1016/j.tcs.2004.10.003

9. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: Finite equational bases in process
algebra: Results and open questions. In: Processes, Terms and Cycles: Steps on the
Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th
Birthday, Lecture Notes in Computer Science, vol. 3838, pp. 338–367. Springer (2005).
https://doi.org/10.1007/11601548 18

10. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Luttik, B.: A finite equational base for CCS with
left merge and communication merge. ACM Trans. Comput. Log. 10(1), 6:1–6:26 (2009).
https://doi.org/10.1145/1459010.1459016

11. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Mousavi, M.R.: Lifting non-finite axioma-
tizability results to extensions of process algebras. Acta Inf. 47(3), 147–177 (2010).
https://doi.org/10.1007/s00236-010-0114-7

12. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Nain, S.: Bisimilarity is not finitely
based over BPA with interrupt. Theor. Comput. Sci. 366(1-2), 60–81 (2006).
https://doi.org/10.1016/j.tcs.2006.07.003

13. Aceto, L., Ingólfsdóttir, A., Luttik, B., van Tilburg, P.: Finite equational bases for fragments
of CCS with restriction and relabelling. In: Proceedings of IFIP TCS 2008. IFIP, vol. 273,
pp. 317–332 (2008). https://doi.org/10.1007/978-0-387-09680-3 22

14. Baeten, J.C.M., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Communi-
cating Processes. Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press, United Kingdom (2009). https://doi.org/10.1017/CBO9781139195003

15. Baeten, J.C.M., Vaandrager, F.W.: An algebra for process creation. Acta Informatica 29(4),
303–334 (1992). https://doi.org/10.1007/BF01178776

16. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and
Control 60(1-3), 109–137 (1984). https://doi.org/10.1016/S0019-9958(84)80025-X

17. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theor.
Comput. Sci. 37, 77–121 (1985). https://doi.org/10.1016/0304-3975(85)90088-X

18. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the ACM 42(1),
232–268 (1995). https://doi.org/10.1145/200836.200876

19. Brookes, S.D., Roscoe, A.W., Walker, D.J.: An operational semantics for CSP. Report, Uni-
versity of Oxford (1986)

https://doi.org/10.1016/j.tcs.2020.07.044
https://doi.org/10.1006/inco.1994.1040
https://doi.org/10.4230/LIPIcs.CSL.2021.8
https://doi.org/10.4230/LIPIcs.CONCUR.2020.18
https://doi.org/10.1016/j.ic.2004.02.001
http://journals.cambridge.org/action/displayAbstract?aid=44743
http://journals.cambridge.org/action/displayAbstract?aid=44743
https://doi.org/10.1016/j.tcs.2004.10.003
https://doi.org/10.1007/11601548_18
https://doi.org/10.1145/1459010.1459016
https://doi.org/10.1007/s00236-010-0114-7
https://doi.org/10.1016/j.tcs.2006.07.003
https://doi.org/10.1007/978-0-387-09680-3_22
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1007/BF01178776
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1145/200836.200876

26 L. Aceto, E. Anastasiadi, V. Castiglioni, and A. Ingólfsdóttir

20. Chen, T., Fokkink, W., van Glabbeek, R.J.: On the axiomatizability of impossible futures.
Log. Methods Comput. Sci. 11(3) (2015). https://doi.org/10.2168/LMCS-11(3:17)2015

21. Fokkink, W., Luttik, B.: An omega-complete equational specification of interleaving. In:
Proceedings of ICALP 2000. Lecture Notes in Computer Science, vol. 1853, pp. 729–743
(2000). https://doi.org/10.1007/3-540-45022-X 61

22. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract). In: Pro-
ceedings of CONCUR ’90. Lecture Notes in Computer Science, vol. 458, pp. 278–297
(1990). https://doi.org/10.1007/BFb0039066

23. van Glabbeek, R.J.: Full abstraction in structural operational semantics (extended abstract).
In: Proceedings of AMAST ’93. pp. 75–82. Workshops in Computing (1993)

24. van Glabbeek, R.J., Vaandrager, F.W.: Modular specifications in process algebra with curious
queues. In: Algebraic Methods: Theory, Tools and Applications. Lecture Notes in Computer
Science, vol. 394, pp. 465–506. Springer (1987). https://doi.org/10.1007/BFb0015049

25. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency.
In: Proceedings of PARLE, Volume II, 1987. Lecture Notes in Computer Science, vol. 259,
pp. 224–242 (1987). https://doi.org/10.1007/3-540-17945-3 13

26. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimula-
tion as a congruence. Information and Computation 100(2), 202–260 (1992).
https://doi.org/10.1016/0890-5401(92)90013-6

27. Groote, J.F., de Vink, E.P.: An axiomatization of strong distribution bisimulation for a lan-
guage with a parallel operator and probabilistic choice. In: From Software Engineering to
Formal Methods and Tools, and Back - Essays Dedicated to Stefania Gnesi on the Occasion
of Her 65th Birthday. Lecture Notes in Computer Science, vol. 11865, pp. 449–463 (2019).
https://doi.org/10.1007/978-3-030-30985-5 26

28. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of
the ACM 32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460

29. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
30. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384

(1976). https://doi.org/10.1145/360248.360251
31. Middelburg, C.A.: Probabilistic process algebra and strategic interleaving. Sci. Ann. Com-

put. Sci. 30(2), 205–243 (2020). https://doi.org/10.7561/SACS.2020.2.205
32. Milner, R.: Communication and Concurrency. PHI Series in computer science, Prentice Hall

(1989)
33. Moller, F.: Axioms for Concurrency. Ph.D. thesis, Department of Computer Science, Uni-

versity of Edinburgh (July 1989), https://era.ed.ac.uk/bitstream/handle/
1842/11182/Moller1989.pdf, report CST-59-89. Also published as ECS-LFCS-89-
84

34. Moller, F.: The importance of the left merge operator in process algebras. In: Proceed-
ings of ICALP ‘90. Lecture Notes in Computer Science, vol. 443, pp. 752–764 (1990).
https://doi.org/10.1007/BFb0032072

35. Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In: Proceedings
of LICS ’90. pp. 142–153 (1990). https://doi.org/10.1109/LICS.1990.113741

36. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Proceedings of
GI-Conference. Lecture Notes in Computer Science, vol. 104, pp. 167–183 (1981).
https://doi.org/10.1007/BFb0017309

37. Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN-19, Com-
puter Science Department, Aarhus University (1981)

38. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comput. Sci. 37,
245–267 (1985). https://doi.org/10.1016/0304-3975(85)90093-3

39. Vaandrager, F.W.: Algebraic Techniques for Concurrency and their Application. Ph.D. thesis,
University of Amsterdam (February 1990)

https://doi.org/10.2168/LMCS-11(3:17)2015
https://doi.org/10.1007/3-540-45022-X_61
https://doi.org/10.1007/BFb0039066
https://doi.org/10.1007/BFb0015049
https://doi.org/10.1007/3-540-17945-3_13
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1007/978-3-030-30985-5_26
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/360248.360251
https://doi.org/10.7561/SACS.2020.2.205
https://era.ed.ac.uk/bitstream/handle/1842/11182/Moller1989.pdf
https://era.ed.ac.uk/bitstream/handle/1842/11182/Moller1989.pdf
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1109/LICS.1990.113741
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/0304-3975(85)90093-3

	Non-Finite Axiomatisability Results via Reductions: CSP Parallel Composition and CCS Restriction

